Skip to main content
Log in

Simulation of Heat Propagation Processes in the Detection Pixel with Superconducting Layers of Single-Photon Thermoelectric Detector

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The results of computer simulation of heat propagation processes in the three-layer detection pixel with the superconducting layers of thermoelectric detector after the absorption of single photons energy of 1–1000 eV are presented. We consider the different geometries of the detection pixel consisting of CeB6 or (La,Ce)B6 thermoelectric sensor, absorber and heat sink of Nb, Pb or YBCO superconductors. The computations based on the heat conduction equation from the limited volume are carried out by the three-dimensional matrix method for differential equations. It is shown that by changing the materials and dimension of the detection pixel elements, as well as the operating temperature of the detector enables one to obtain the detector to register the photons within the given spectral range, required energy resolution, and counting rate. Such a detector has a number of advantages that allow one to consider the thermoelectric detector as a real alternative to the most promising single photon detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadfield, R.H., Nature Photonics, 2009, vol. 3, p. 696.

    Article  ADS  Google Scholar 

  2. Yamashita, T., Miki, S., and Terai, H., IEICE Transactions on Electronics, 2017, vol. E100-C, p. 274.

    Article  ADS  Google Scholar 

  3. Gulian, A., Wood, K., van Vechten, D., and Fritzdet, G., J. Mod. Opt., 2004, vol. 51, p. 1467.

    Article  ADS  Google Scholar 

  4. Petrosyan, V.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2011, vol. 46, p. 125.

    Article  ADS  Google Scholar 

  5. Fritz, G.G., Wood, K.S., van Vechten, D., Gyulamiryan, A.L., Kuzanyan, A.S., Giordano, N.J., Jacobs, T.M., Wu, H.-D., Horwitz, J.S., and Gulian, A.M., Proc.SPIE, 2000, vol. 4140, p. 459.

    Article  ADS  Google Scholar 

  6. van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian, A., Nucl. Instrum. Meth. Phys. Res., 2000, vol. 444, p. 42.

    Article  ADS  Google Scholar 

  7. Gulian, A., Wood, K., van Vechten, D., Fritz, G., Wu, H.-D., Bounnak, S., Bussman, K., Winzer, K., Kunii, S., Gurin, V., Korsukova, M., Mitterer, C., Carlsson, M., Golf, F., Kuzanyan, A., Badalyan, G., Harutyunyan, S., Petrosyan, S., Vardanyan, V., Paronyan, T., and Nikoghosyan. V., Nucl. Instrum. Meth. Phys. Res., 2004, vol. A520, p. 36.

    Article  ADS  Google Scholar 

  8. Kuzanyan, A.A., Nano Studies, 2014, vol. 9, p. 93.

    Google Scholar 

  9. Kuzanyan, A., Nikoghosyan, V., and Kuzanyan, A., Proc. SPIE, 2015, vol. 9504, p. 95040O.

    Article  ADS  Google Scholar 

  10. Kuzanyan, A., Nikoghosyan, V., and Kuzanyan, A., Sensors & Transducers, 2015, vol. 191, p. 57.

    Google Scholar 

  11. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Phys. Conf. Ser., 2016, vol. 673, p. 012007.

    Article  Google Scholar 

  12. Kuzanyan, A., Kuzanyan, A., and Nikoghosyan, V., Armenian Patent, no. 2946, 2015.

    Google Scholar 

  13. Kuzanyan, A.A., Kuzanyan, A.S., Nikoghosyan, V.R., Gurin, V.N., and Volkov, M.P., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 181.

    Article  ADS  Google Scholar 

  14. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., Sensors & Transducers, 2016, vol. 207, p. 21.

    Google Scholar 

  15. Kuzanyan, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 360.

    Article  ADS  Google Scholar 

  16. Kuzanyan, A., Kuzanyan, A., and Nikoghosyan, V., Armenian Patent, no. 3043, 2016.

    Google Scholar 

  17. Poole, C.P., Handbook of Superconductivity, San Diego: Academic Press, 2000.

    Google Scholar 

  18. Peysson, Y., Ayache, C., Salce, B., Rossat-Mignod, J., Kunii, S., and Kasuya, T., J. Magnetism and Magnetic Materials, 1985, vol. 47&48, p. 63.

    Article  ADS  Google Scholar 

  19. Peysson, Y., Ayache, C., and Salce, B., J. Magnetism and Magnetic Materials, 1986, vol. 59, p. 33.

    Article  ADS  Google Scholar 

  20. Leupold, H.A. and Boorse, H.A., Phys. Rev., 1964, vol. 134, p. 5A.

    Article  Google Scholar 

  21. Wasim, S.M. and Zebouni, N.H., Phys. Rev., 1969, vol. 187, p. 10.

    Article  Google Scholar 

  22. Mezahov-Deglin, L.P., JETP, 1979, vol. 50, p. 369.

    ADS  Google Scholar 

  23. https://www.bnl.gov/magnets/staff/gupta/cryogenic-data-handbook/Section8.pdf

  24. Moler, K.A., Baar, D.J., Liang, R., Hardy, W.N., and Kapitulnik, A., arXiv:cond-mat/9505129v1.

  25. Uher, C., Physical Properties of High Temperature Superconductors, D.M. Agrinsberg (Ed.), Singapore: Word Scientific, ??. 3; 159, 1992.

  26. Furukawar, G.T., Douglasr, T.B., McCoske Yr,R.E., and Ginnings, D.C., J. Research National Bureau Stand., 1956, vol. 57, p. 67.

    Article  Google Scholar 

  27. http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_Scheie_FinalReport.pdf

  28. Alterovitz, S., Deutscher, G., and Gershenson, M., J. Appl. Phys., 1975, vol. 46, p. 3637.

    Article  ADS  Google Scholar 

  29. https://www.bnl.gov/magnets/staff/gupta/cryogenic-data-handbook/Section8.pdf

  30. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., Proc. SPIE, 2017, vol. 10229, p. 102290P.

    Article  Google Scholar 

  31. Chantler, C.T., J. Phys. Chem. Ref. Data, 1995, vol. 24, p. 1.

    Article  Google Scholar 

  32. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 249.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A., Nikoghosyan, V.R. & Kuzanyan, A.S. Simulation of Heat Propagation Processes in the Detection Pixel with Superconducting Layers of Single-Photon Thermoelectric Detector. J. Contemp. Phys. 53, 73–84 (2018). https://doi.org/10.3103/S1068337218010097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337218010097

Keywords

Navigation