Skip to main content
Log in

Fluctuations in order–disorder transitions in the DNA–ligand complexes with various binding mechanisms

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The melting of the DNA–ligand complex is considered theoretically for the ligands binding with the DNA by two mechanisms. The obtained results describe the experimentally observed behavior of such quantities as the denaturation degree and the correlation length depending on the concentration of ligands. It is shown that the heat and cold denaturations of the DNA–ligand complexes exhibit the same cooperativity, as the heat denaturation of the pure DNA. At the same time, the temperature range of the cold denaturation is essentially narrower than the interval for the heat denaturation of the pure DNA and the DNA–ligand complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vedenov, A. A., Dykhne, A. M., and Frank-Kamenetskii, M. D., UFN, 1971, vol. 105, p. 479.

    Article  Google Scholar 

  2. Poland, D. and Scheraga, H.A., J. Chem. Phys., 1966, vol. 45, p. 1456.

    Article  ADS  Google Scholar 

  3. Poland, D.C. and Scheraga, H.A., The Theory of Helix–Coil Transition. New York: Academic Press, 1970.

  4. Chalikian, T., Biopolymers, 2003, vol. 70, p. 492.

    Article  Google Scholar 

  5. Garel, T., Monthus, C., and Orland, H., Europhys. Lett., 2001, vol. 55, p. 138.

    Article  ADS  Google Scholar 

  6. Cule, D. and Hwa, T., Phys. Rev. Lett., 1997, vol. 79, p. 2375.

    Article  ADS  Google Scholar 

  7. Barbi, M., Lepri, S., Peyrard, M., and Theodorakopoulos, N., Phys. Rev. E, 2003, vol. 68, p. 061909.

    Article  ADS  Google Scholar 

  8. Takano, M., Nagayama, K., and Suyama, A., J. Chem. Phys., 2001, vol. 116, p. 2219.

    Article  ADS  Google Scholar 

  9. Munoz, V. and Serrano, L., Biopolymers, 1997, vol. 41, p. 495.

    Article  Google Scholar 

  10. Wartell, R.M. and Benight, A.S., Phys. Reports, 1985, vol. 126, p. 67.

    Article  ADS  Google Scholar 

  11. Frank-Kamenetskii, M.D., Phys. Reports, 1997, vol. 288, p. 13.

    Article  ADS  Google Scholar 

  12. Garbett, N.C., Ragazzon, P.A., and Chaires, J.B., Nature Protocols, 2007, vol. 2, p. 3166.

    Article  Google Scholar 

  13. Zimmer, Ch. and Wahnert, U., Progress Biophys. Molecul. Biology, 1986, vol. 47, p. 31.

    Article  Google Scholar 

  14. Nelson, S.M., Ferguson, L.R., and Denny, W.A., Mutat. Res., 2007, vol. 623, p. 24.

    Article  Google Scholar 

  15. Reha, D., Kabelac, M., Ryjacek, F., Sponer, J., Sponer, J.E., Elstner, M., Suhai, S., and Hobza, P., J. American Chem. Soc., 2002, vol. 124, p. 3366.

    Article  Google Scholar 

  16. Krishnamoorthy, G., Duportail, G., and Mely, Y., Biochemistry, 2002, vol. 41, p. 15277.

    Article  Google Scholar 

  17. Reddy, B.S., Sharma, S.K., and Lown, J.W., Current Medic. Chem., 2001, vol. 8, p. 475.

    Article  Google Scholar 

  18. Niidome, T., Ohmori, N., Ichinose, A., Wada, A., Mihara, H., Hirayama, T., and Aoyagi, H., J. Biol. Chem., 1996, vol. 272, p. 15307.

    Article  Google Scholar 

  19. Larsson, A., Carlsson, C., Jonsson, M., and Albinsson, B., J. American Chem. Soc., 1994, vol. 116, p. 8459.

    Article  Google Scholar 

  20. Lipscomb, L.A., Zhou, F.X., Presnell, S.R., Woo, R.J., Peek, M.E., Plaskon, R.R., and Williams. L.D., Biochemistry, 1996, vol. 35, p. 2818.

    Article  Google Scholar 

  21. Karapetian, A.T., Mehrabian, N.M., Terzikian, G.A., Vardevanian, P.O., Antonian, A.P., Borisova, O.F., and Frank-Kamenetskii, M., J. Biomolec. Struct. Dynamics, 1996, vol. 14, p. 275.

    Article  Google Scholar 

  22. Grigoryan, Z.A., Mamasakhlisov, Y.Sh., and Karapetian, A.T., Reports of the NAS of Armenia, 2014, vol. 114, p. 123.

    Google Scholar 

  23. Hairyan, Sh.A., Mamasakhlisov, E.Sh., and Morozov, V.F., Biopolymers, 1995, vol. 35, p. 75.

    Article  Google Scholar 

  24. Morozov, V.F., Badasyan, A.V., Grigoryan, A.V., Sahakyan, M.A., and Mamasakhlisov, Y.Sh., Biopolymers, 2004, vol. 75, p. 434.

    Article  Google Scholar 

  25. Badasyan, A., Tonoyan, Sh.A., Giacometti, A., Podgornik, R., Parsegian, V.A., Mamasakhlisov, Y.Sh., and Morozov, V.F., Phys. Rev. E, 2014, vol. 89, p. 022723.

    Article  ADS  Google Scholar 

  26. Dubins, D.N., Lee, A., Macgregor R.B., and Chalikian, T.V., J. Am. Chem. Soc., 2001, vol. 123, p. 9254.

    Article  Google Scholar 

  27. Mikulecky, P.J. and Feig, A.L., J. Am. Chem. Soc., 2002, vol. 124, p. 890.

    Article  Google Scholar 

  28. Mikulecky, P.J. and Feig, A.L., Nucl. Acids Res., 2004, vol. 32, p. 3967.

    Article  Google Scholar 

  29. Privalov, P.L., Crit. Rev. Biochem. Mol. Biol., 1990, vol. 25, p. 281.

    Article  Google Scholar 

  30. Hayrapetyan, G. N., Iannelli, F., Lekscha, J., Morozov, V.F., Mamasakhlisov. Y.Sh., Phys. Rev. Lett., 2014, vol. 113, p. 068101.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sh. Mamasakhlisov.

Additional information

Original Russian Text © Y.Sh. Mamasakhlisov, A.P. Antonyan, A.Y. Mamasakhlisov, Sh.A. Tonoyan, P.H. Vardevanyan, 2017, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2017, Vol. 52, No. 2, pp. 235–243.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamasakhlisov, Y.S., Antonyan, A.P., Mamasakhlisov, A.Y. et al. Fluctuations in order–disorder transitions in the DNA–ligand complexes with various binding mechanisms. J. Contemp. Phys. 52, 173–179 (2017). https://doi.org/10.3103/S1068337217020128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337217020128

Keywords

Navigation