Skip to main content
Log in

To the theory of current transport in the mechanically controllable break junctions

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The transport mechanisms for metal–molecule–metal junction after break are analyzed. Theoretical expression for the threshold voltage for transmission from the direct tunneling current to the Fowler–Nordheim tunneling is obtained and analyzed. It is show that threshold voltage depends on the electrode metal work function and displacement. With the increase in displacement the threshold voltage quickly decreases. Differential resistances for the low and high voltage modes increase with increasing in the displacement, and in the Fowler–Nordheim tunneling mode the differential resistance increases when voltage is decrease. It is shown that for the cases commonly used metals (Ag, Au, Pt) the threshold voltage is linearly dependent on the work function of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tao, N.J., Nature Nanotechnology, 2006, vol. 1, p. 173.

    Article  ADS  Google Scholar 

  2. Aviram, A. and Ratner, M.A., Chem. Phys. Lett., 1974, vol. 29, p. 277.

    Article  ADS  Google Scholar 

  3. Kim, Y., Pietsch, T., Erbe, A., Belzig, W., and Scheer, E., Nano Lett., 2011, vol. 11, p. 3734.

    Article  ADS  Google Scholar 

  4. Martin, C.A., Ding, D., van der Zant, H.S., and van Ruitenbeek, J.M., New J. Phys., 2008, vol. 10, p. 065008.

    Article  ADS  Google Scholar 

  5. Perrin, M.L., Verzijl, C.J., Martin, C.A., Shaikh, A.J., Eelkema, R., van Esch, J.H., van Ruitenbeek, J.M., Thijssen, J.M., van der Zant, H.S., and Dulic, D., Nature Nanotechnology, 2013, vol. 8, p. 282.

    Article  ADS  Google Scholar 

  6. Schinabeck, C., Härtle, R., Weber, H.B., and Thoss, M., Phys. Rev. B, 2014, vol. 90, p. 075409.

    Article  ADS  Google Scholar 

  7. Xiang, D., Zhang, Y., Pyatkov, F., Offenhäusser, A., and Mayer, D., Chem. Commun., 2011, vol. 47, p. 4760.

    Article  Google Scholar 

  8. Kergueris, C., Bourgoin, J.-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M., and Joachim, C., Phys. Rev. B, 1999, vol. 59, p. 12505.

    Article  ADS  Google Scholar 

  9. Cuevas, J.C. and Scheer, E., Molecular Electronics. An Introduction to Theory and Experiment, Singapore World Scientific Publishing, 2010.

    Book  Google Scholar 

  10. Binnig, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett., 1986, vol. 56, p. 930.

    Article  ADS  Google Scholar 

  11. Nitzan, A. and Ratner, M.A., Science, 2003, vol. 300, p. 1384.

    Article  ADS  Google Scholar 

  12. Cui, X.D., Zarate, X., Tomfohr, J., Sankey, O.F., Primak, A., Moore, A.L., Moore, T.A., Gust, D., Harris, G., and Lindsay, S.M., Nanotechnology, 2002, vol. 13, p. 5.

    Article  ADS  Google Scholar 

  13. Selzer, Y., Salomon, A., and Cahen, D., J. Phys. Chem. B, 2002, vol. 106, p. 10432.

    Article  Google Scholar 

  14. Datta, S., Nanotechnology, 2004, vol. 15, p. S433.

  15. McCreery, R., Chem. Mater., 2004, vol. 16, p. 4477.

    Article  Google Scholar 

  16. Selzer, Y., Cai, L., Cabassi, M.A., Yao, Y., Tour, J.M., Mayer, T.S., and Allara, D.L., Nano Lett., 2005, vol. 5, p. 61.

    Article  ADS  Google Scholar 

  17. Troisi, A. and Ratner, M., Small, 2006, vol. 2, p. 172.

    Article  Google Scholar 

  18. Wang, C.-K. and Luo, Y., J. Chem. Phys., 2003, vol. 119, p. 4923.

    Article  ADS  Google Scholar 

  19. Darancet, P., Widawsky, J.R., Choi, H.J., Venkataraman, L., and Neaton, J.B., Nano Lett., 2012, vol. 12, p. 6250.

    Article  ADS  Google Scholar 

  20. Mujica, V. and Ratner, M.A., Chem. Phys., 2001, vol. 264, p. 365.

    Article  ADS  Google Scholar 

  21. Gasyna, Z.L., Morales, G.M., Sanchez, A., and Chem, L. Yu., Phys. Lett., 2006, vol. 417, p. 401.

    Google Scholar 

  22. Beebe, J.M., Kim, B-S., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G., Phys. Rev. Lett., 2006, vol. 97, p. 026801.

    Article  ADS  Google Scholar 

  23. Briechle, B.M., Kim, Y., Ehrenreich, P., Erbe, A., Sysoiev, D., Huhn, T., Groth, U., and Scheer, E., Beilstein J. Nanotechnol., 2012, vol. 3, p. 798.

    Article  Google Scholar 

  24. Sze, M.S., The Physics of Semiconductor Devices, New York Wiley, 1981.

    Google Scholar 

  25. Simmons, J.G., J. Appl. Phys., 1963, vol. 34, p. 793.

    Google Scholar 

  26. Sachtler, W.M.H., Dorgelo, G.J.M., and Holscher, A.A., Surf. Sci., 1966, vol. 5, p. 221.

    Article  ADS  Google Scholar 

  27. Anderson, P.A., Phys. Rev., 1959, vol. 115, p. 553.

    Article  ADS  Google Scholar 

  28. CRC Handbook of Chemistry and Physics, 96th Edition, 2015.

  29. Rafsa, K.T., Devisree, S., Anand, K., and Rusel, R., 2016 UKSim AMSS 18th Int. Conf. on Computer Modeling and Simulation, 2016, pp. 87–92.

    Google Scholar 

  30. Na, J.-S., Ayres, J., Chandra, K.L., Chu, C., Gorman, C.B., and Parsons, G.N., Nanotechnology, 2007, vol. 18, p. 035203.

    Article  ADS  Google Scholar 

  31. Hölzl, J. and Schulte, F.K., Work Function of Metals, In Solid Surface Physics, G. Höhler, Ed., Berlin: Springer-Verlag, 1979.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Gasparyan.

Additional information

Original Russian Text © F.V. Gasparyan, 2017, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2017, Vol. 52, No. 2, pp. 166–176.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparyan, F.V. To the theory of current transport in the mechanically controllable break junctions. J. Contemp. Phys. 52, 121–128 (2017). https://doi.org/10.3103/S1068337217020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337217020050

Keywords

Navigation