Skip to main content
Log in

Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Considering the equations for some functions involving the first or the second derivatives of the biconfluent Heun function, we construct two expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta functions. The first series applies single Beta functions as expansion functions, while the second one involves a combination of two Beta functions. The coefficients of expansions obey four- and five-term recurrence relations, respectively. It is shown that the proposed technique is potent to produce series solutions in terms of other special functions. Two examples of such expansions in terms of the incomplete Gamma functions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heun’s Differential Equations, A. Ronveaux, Ed., London: Oxford University Press, 1995.

  2. NIST Handbook of Mathematical Functions, F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, Eds., New York: Cambridge University Press, 2010.

  3. Léauté, B. and Marcilhacy, G., J. Phys. A, 1986, vol. 19, p. 3527.

    Article  ADS  MathSciNet  Google Scholar 

  4. Pons, R. and Marcilhacy, G., Class. Quantum Grav., 1987, vol. 4, p. 171.

    Article  ADS  MathSciNet  Google Scholar 

  5. Ishkhanyan, A.M. and Suominen, K.-A., J. Phys. A, 2001, vol. 34, p. 6301.

    Article  ADS  MathSciNet  Google Scholar 

  6. Ralko, A. and Truong, T.T., Phys. Lett. A, 2004, vol. 323, p. 395.

    Article  ADS  MathSciNet  Google Scholar 

  7. Caruso, F., Martins, J., and Oguri, V., Annals of Physics, 2014, vol. 347, p. 130.

    Article  ADS  MathSciNet  Google Scholar 

  8. Shahverdyan, T.A., Ishkhanyan, T.A., Grigoryan, A.E., and Ishkhanyan, A.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 211.

    Article  ADS  Google Scholar 

  9. Karwoswki, J. and Witek, H.A., Theor. Chem. Accounts, 2014, vol. 133, p. 1494.

    Article  Google Scholar 

  10. Ishkhanyan, A.M., Eur. Phys. Lett., 2015, vol. 112, p. 10006.

    Article  Google Scholar 

  11. Batic, D., Williams, R., and Nowakowski, M., J. Phys. A, 2013, vol. 46, p. 245204.

    Article  ADS  MathSciNet  Google Scholar 

  12. Decarreau, A., Dumont-Lepage, M., Maroni, P., Robert, A., and Ronveaux, A., Ann. Soc. Sci. Bruxelles, 1978, vol. 92, p. 53.

    MathSciNet  Google Scholar 

  13. Maroni, P., Ann. Inst. Henri Poincaré A, 1979, vol. 30, p. 315.

    ADS  MathSciNet  Google Scholar 

  14. Datta, D.P. and Mukherjee, S., J. Phys. A, 1980, vol. 13, p. 3161.

    Article  ADS  Google Scholar 

  15. Batola, F., Arch. Ration. Mech. Ana., 1982, vol. 78, p. 275.

    Article  MathSciNet  Google Scholar 

  16. Chaudhuri, R.N., J. Phys. A, 1983, vol. 16, p. 209.

    Article  ADS  Google Scholar 

  17. Arriola, E.R., Zarzo, A., and Dehesa, J.S., J. Comput. Appl. Math., 1991, vol. 37, p. 161.

    Article  MathSciNet  Google Scholar 

  18. Hautot, A., Bull. Soc. Roy. Sci. Liège, 1971, vol. 40, p. 13.

    MathSciNet  Google Scholar 

  19. Exton, H., Ann. Soc. Sci. Bruxelles, 1989, vol. 102, p. 87.

    MathSciNet  Google Scholar 

  20. Kazakov, A.Ya. and Slavyanov, S.Yu., Methods and Appl. Anal., 1996, vol. 3, p. 447.

    MathSciNet  Google Scholar 

  21. Slavyanov, S.Yu., J. Phys. A, 1996, vol. 29, p. 7329.

    Article  ADS  MathSciNet  Google Scholar 

  22. Roseau, A., Bull. Belg. Math. Soc., 2002, vol. 9, p. 321.

    MathSciNet  Google Scholar 

  23. Belmehdi, S. and Chehab, J.-P., Abstract and Appl. Anal., 2004, vol. 2004, p. 295.

    Article  ADS  MathSciNet  Google Scholar 

  24. Ishkhanyan, A.M. and Suominen, K.-A., J. Phys. A, 2003, vol. 36, p. L81.

    Article  ADS  MathSciNet  Google Scholar 

  25. Shahnazaryan, V.A., Ishkhanyan, T.A., Shahverdyan, T.A., and Ishkhanyan, A.M., Armenian J. Physics, 2012, vol. 5, p. 146.

    Google Scholar 

  26. Ishkhanyan, A.M., Phys. Lett. A, 2016, vol. 380, p. 640.

    Article  ADS  MathSciNet  Google Scholar 

  27. Ishkhanyan, T.A. and Ishkhanyan, A.M., AIP Advances, 2014, vol. 4, p. 087132.

    Article  ADS  Google Scholar 

  28. Leroy, C. and Ishkhanyan, A.M., Integral Transforms and Special Functions, 2015, vol. 26, p. 451.

    Article  MathSciNet  Google Scholar 

  29. Tarloyan, A.S., Ishkhanyan, T.A., and Ishkhanyan, A.M., Ann. Phys. (Berlin), 2016, vol. 528, p. 264.

    Article  ADS  Google Scholar 

  30. Ishkhanyan, A. and Krainov, V., arXiv:1508.06989 (2016).

    Google Scholar 

  31. Ishkhanyan, A., Joulakian, B., and Suominen, K.-A., J. Phys. B, 2009, vol. 42, p. 221002.

    Article  ADS  Google Scholar 

  32. Heun, K., Math. Ann., 1889, vol. 33, p. 161.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Ishkhanyan.

Additional information

Original Russian Text © T.A. Ishkhanyan, Y. Pashayan-Leroy, M.R. Gevorgyan, C. Leroy, A.M. Ishkhanyan, 2016, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2016, Vol. 51, No. 3, pp. 313–322.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishkhanyan, T.A., Pashayan-Leroy, Y., Gevorgyan, M.R. et al. Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions. J. Contemp. Phys. 51, 229–236 (2016). https://doi.org/10.3103/S106833721603004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833721603004X

Keywords

Navigation