Abstract
Considering the equations for some functions involving the first or the second derivatives of the biconfluent Heun function, we construct two expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta functions. The first series applies single Beta functions as expansion functions, while the second one involves a combination of two Beta functions. The coefficients of expansions obey four- and five-term recurrence relations, respectively. It is shown that the proposed technique is potent to produce series solutions in terms of other special functions. Two examples of such expansions in terms of the incomplete Gamma functions are presented.
Similar content being viewed by others
References
Heun’s Differential Equations, A. Ronveaux, Ed., London: Oxford University Press, 1995.
NIST Handbook of Mathematical Functions, F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, Eds., New York: Cambridge University Press, 2010.
Léauté, B. and Marcilhacy, G., J. Phys. A, 1986, vol. 19, p. 3527.
Pons, R. and Marcilhacy, G., Class. Quantum Grav., 1987, vol. 4, p. 171.
Ishkhanyan, A.M. and Suominen, K.-A., J. Phys. A, 2001, vol. 34, p. 6301.
Ralko, A. and Truong, T.T., Phys. Lett. A, 2004, vol. 323, p. 395.
Caruso, F., Martins, J., and Oguri, V., Annals of Physics, 2014, vol. 347, p. 130.
Shahverdyan, T.A., Ishkhanyan, T.A., Grigoryan, A.E., and Ishkhanyan, A.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 211.
Karwoswki, J. and Witek, H.A., Theor. Chem. Accounts, 2014, vol. 133, p. 1494.
Ishkhanyan, A.M., Eur. Phys. Lett., 2015, vol. 112, p. 10006.
Batic, D., Williams, R., and Nowakowski, M., J. Phys. A, 2013, vol. 46, p. 245204.
Decarreau, A., Dumont-Lepage, M., Maroni, P., Robert, A., and Ronveaux, A., Ann. Soc. Sci. Bruxelles, 1978, vol. 92, p. 53.
Maroni, P., Ann. Inst. Henri Poincaré A, 1979, vol. 30, p. 315.
Datta, D.P. and Mukherjee, S., J. Phys. A, 1980, vol. 13, p. 3161.
Batola, F., Arch. Ration. Mech. Ana., 1982, vol. 78, p. 275.
Chaudhuri, R.N., J. Phys. A, 1983, vol. 16, p. 209.
Arriola, E.R., Zarzo, A., and Dehesa, J.S., J. Comput. Appl. Math., 1991, vol. 37, p. 161.
Hautot, A., Bull. Soc. Roy. Sci. Liège, 1971, vol. 40, p. 13.
Exton, H., Ann. Soc. Sci. Bruxelles, 1989, vol. 102, p. 87.
Kazakov, A.Ya. and Slavyanov, S.Yu., Methods and Appl. Anal., 1996, vol. 3, p. 447.
Slavyanov, S.Yu., J. Phys. A, 1996, vol. 29, p. 7329.
Roseau, A., Bull. Belg. Math. Soc., 2002, vol. 9, p. 321.
Belmehdi, S. and Chehab, J.-P., Abstract and Appl. Anal., 2004, vol. 2004, p. 295.
Ishkhanyan, A.M. and Suominen, K.-A., J. Phys. A, 2003, vol. 36, p. L81.
Shahnazaryan, V.A., Ishkhanyan, T.A., Shahverdyan, T.A., and Ishkhanyan, A.M., Armenian J. Physics, 2012, vol. 5, p. 146.
Ishkhanyan, A.M., Phys. Lett. A, 2016, vol. 380, p. 640.
Ishkhanyan, T.A. and Ishkhanyan, A.M., AIP Advances, 2014, vol. 4, p. 087132.
Leroy, C. and Ishkhanyan, A.M., Integral Transforms and Special Functions, 2015, vol. 26, p. 451.
Tarloyan, A.S., Ishkhanyan, T.A., and Ishkhanyan, A.M., Ann. Phys. (Berlin), 2016, vol. 528, p. 264.
Ishkhanyan, A. and Krainov, V., arXiv:1508.06989 (2016).
Ishkhanyan, A., Joulakian, B., and Suominen, K.-A., J. Phys. B, 2009, vol. 42, p. 221002.
Heun, K., Math. Ann., 1889, vol. 33, p. 161.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © T.A. Ishkhanyan, Y. Pashayan-Leroy, M.R. Gevorgyan, C. Leroy, A.M. Ishkhanyan, 2016, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2016, Vol. 51, No. 3, pp. 313–322.
About this article
Cite this article
Ishkhanyan, T.A., Pashayan-Leroy, Y., Gevorgyan, M.R. et al. Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions. J. Contemp. Phys. 51, 229–236 (2016). https://doi.org/10.3103/S106833721603004X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S106833721603004X