Skip to main content
Log in

Free-carrier absorption in a parabolic quantum well with consideration of scattering on ionized impurities

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Intra-subband transitions caused by light absorption in a parabolic quantum well is considered taking into account the scattering by ionized impurity centers. To calculate the scattering matrix element, the Born approximation is used and the interaction with the impurity is described by the Coulomb potential. An analytical expression for the absorption coefficient of processes with the initial absorption of photon and further scattering by an ionized impurity center is obtained. For absorption coefficient the frequency characteristics and dependence on the width of quantum well are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, H.Y., Spitzer, W., and Collins, R.J., Phys. Rev., 1956, vol. 2, p. 101.

    Google Scholar 

  2. Rosenberg, R. and Lax, M., Phys. Rev., 1958, vol. 12, p. 843.

    Article  ADS  Google Scholar 

  3. Opticheskie yavleniya v opticheskikh kvanto-razmernykh strukturach (Photoelectrical Phenomena in Semiconductor and Quantum-Dimensional Structures), Ivchenko E. L. and Vorob’ev L. E., Eds., SPSTU, 2000.

  4. Asano, T., Noda, S., and Sasaki, A., Physica E, 1998, vol. 2, p. 111.

    Article  ADS  Google Scholar 

  5. Intersubband Transitions in Quantum Structures, Paella, R., ed., New York McGraw-Hill, 2006.

  6. Helm, M., Semiconductors and Semimetals. The Basic Physics of Intersubband Transitions, 1999, vol. 62, Chapter 1, p. 59.

    Google Scholar 

  7. Alves, F.D.P., Karunasiri, G., Hanson, N., Byloos, M., Liu, H.C., Bezinger, A., and Buchanan. M., Infrared Phys. & Technol., 2007, vol. 50, p. 182.

    Article  ADS  Google Scholar 

  8. Li, S.S., Int. J. High Speed Electr. Syst., 2002, vol. 12, p. 761.

    Article  Google Scholar 

  9. Carter, S.G., Ciulin, V., Sherwin, M.S., Hanson, M., Huntington, A., Coldren, L.A., and Gossard, A.C., Appl. Phys. Lett., 2004, vol. 84, p. 840.

    Article  ADS  Google Scholar 

  10. Iizuka, N., Kaneko, K., and Suzuki, N., IEEE J. Quantum Electr., 2006, vol. 42, p. 765.

    Article  ADS  Google Scholar 

  11. Chakraborty, T. and Apalkov, V.M., Adv. Phys., 2003, vol. 52, p. 455.

    Article  ADS  Google Scholar 

  12. Kazaryan, E.M., Gigoryan, V.G., and Kazaryan, A.M., IzvestiyaAN Arm. SSR, Fizika, 1976, vol. 11, p. 351.

    Google Scholar 

  13. Kazaryan, E.M. and Aramyan, K.C., Jzvestiya AN Arm. SSR, Fizika, 1976, vol. 11, p. 122.

    Google Scholar 

  14. Lee, J. and Spector, H.N., J. Appl. Phys., 1983, vol. 54, p. 3921.

    Article  ADS  Google Scholar 

  15. Adamska, H. and Spector, H.N., J. Appl. Phys., 1984, vol. 56, p. 1123.

    Article  ADS  Google Scholar 

  16. Kubakaddi, S.S. and Mulimani, B.G., J. Phys., 1986, vol. 19, p. 11300.

    Google Scholar 

  17. Bhat, J.S., Kubakaddi, S.S., and Mulimani, B.G., J. Appl. Phys., 1992, vol. 72, p. 4966.

    Article  ADS  Google Scholar 

  18. Sankeshwar, N.S., Kubakaddi, S.S., and Mulimani, B.G., J. Phys., 1989, vol. 32, p. 149.

    Google Scholar 

  19. Gashimzade, F.M., Phys Stat. Sol. (b), 1990, vol. 160, p. 177.

    Article  ADS  Google Scholar 

  20. Carosella, F., Ndebeka-Bandou, C., Ferreira, R., Dupont, E., Unterrainer, K., Strasser, G., Wacker, A., and Bastard, G., Phys. Rev. B, 2012, vol. 85, p. 085310.

    Article  ADS  Google Scholar 

  21. Petrosyan, L.S., Jzvestiya NAN Armenii, Fizika, 2002, vol. 37, p. 173.

    Google Scholar 

  22. Hayrapetyan, O.B., Kazaryan, E.M., Petrosyan, L.S., and Sarkisyan, H.A., Physica E, 2015, vol. 66, p. 7.

    Article  ADS  Google Scholar 

  23. Hayrapetyan, D.B., Kazaryan, E.M., Kotanjyan, T.V., and Tevosyan, H.K., Superlattices and Microstructures, 2015, vol. 78, p. 40.

    Article  ADS  Google Scholar 

  24. Hayrapetyan, D.B., Kazaryan, E.M., and Tevosyan, H.K., Superlattices and Microstructures, 2013, vol. 64, p. 204.

    Article  ADS  Google Scholar 

  25. Maksym, P.A. and Chakraborty, T., Phys. Rev. Lett., 1990, vol. 65, p. 108.

    Article  ADS  Google Scholar 

  26. Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures, Cedex France, Les Editions de Physique, pp. 237–295, 1989.

    Google Scholar 

  27. Seeger, K., Semiconductor Physics, Berlin, Heidelberg Springer-Verlag, 2004.

    Book  MATH  Google Scholar 

  28. Kazaryan, E.M. and Petrosyan, S.G., Physical Basics ofSemiconductor Nanoelectronics (in Armenian), RA(S)U Publishing, Yerevan, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Gevorgyan.

Additional information

Original Russian Text © A.H. Gevorgyan, 2016, published in Izvestiya NAN Armenii, Fizika, 2016, Vol. 51, No. 1, pp. 70–78.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorgyan, A.H. Free-carrier absorption in a parabolic quantum well with consideration of scattering on ionized impurities. J. Contemp. Phys. 51, 54–60 (2016). https://doi.org/10.3103/S1068337216010096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337216010096

Keywords

Navigation