Skip to main content
Log in

Determination of location direction of acoustic radiator by using an absorbing axicon

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

A new method is suggested to determine the localization direction of acoustic radiator using the absorbing axicon and only one acoustic detector. The immediate field patterns of acoustic wave diffraction on the absorbing axicon are analyzed. It is shown that with use of finding the center of a “well ”with the decline in the pressure amplitude of spatial distribution of diffracted beam one can definitely determine both the localization directions of acoustic sources and acoustic waves scattered on various substances or on their internal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pedersen, J.A. and Jørgensen, T., Localization Performance of Real and Virtual Sound Sources, NATO OTAN, RTO-MP-HFM-123, 2005, p. 29–1.

    Google Scholar 

  2. Finch, D., Canadian Naval Review, 2007, vol. 3, p. 14.

    Google Scholar 

  3. Kim, K.H., Hursky, P., Porter, M.B, et al., Proc. 8-th European Conference on Underwater Acoustics, Carvoeiro, Portugal, 2006, p. 329.

    Google Scholar 

  4. Athanasopoulos, G., Brouckxon, H., and Verhelst, W., Proc. 11th International Conference on Signal Processing (SIP), 2012. p. 131.

    Google Scholar 

  5. Stone, L.D., Keller, C., Kratzke, T.L., and Strumpfer, J., Report to Bureau d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile, 2011, p. 1.

    MATH  Google Scholar 

  6. Gustafsson, F. and Gunnarsson, F., Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, p. 553.

    Google Scholar 

  7. Bageshwar, D.V., Pawar, A.S., Khanvilkar, V.V., and Kadam, V.J., Eurasian J. Anal. Chem., 2010, vol. 5, p. 187.

    Google Scholar 

  8. de la Zerdaa, A., Kimc, J., Galanzhad, E.I., et al., Contrast Media Mol. Imaging, 2011, vol. 6, p. 346.

    Article  Google Scholar 

  9. Huang, E., Dowlinga, D.R., Whelan, T., and Spiesberger, J.L., J. Acoust. Soc. Am., 2003, vol. 114, p. 1926.

    Article  ADS  Google Scholar 

  10. Martirosyan, A.E., The light filter, Patent of the Republic of Armenia, № 2467A, 2010

    Google Scholar 

  11. Martirosyan, A.E., Optics and Laser Technology, 2011, vol. 43, p. 242.

    Article  ADS  Google Scholar 

  12. Martirosyan, A.E., J. Contemp. Phys. (Armenian Ac. Sci.), 2011, vol. 46, p. 211.

    Article  MATH  Google Scholar 

  13. Goodman, J.W., Introduction to Fourier Optics, San Francisco: McGraw-Hill, 1968.

    Google Scholar 

  14. Woo, J. and Roh, Y., Proc. Symposium on Ultrasonic Electronics, 2013, vol. 34, p. 133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Martirosyan.

Additional information

Original Russian Text © A.E. Martirosyan, A.G. Arakelyan, 2015, published in Izvestiya NAN Armenii, Fizika, 2015, Vol. 50, No. 2, pp. 199–205.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martirosyan, A.E., Arakelyan, A.G. Determination of location direction of acoustic radiator by using an absorbing axicon. J. Contemp. Phys. 50, 148–153 (2015). https://doi.org/10.3103/S1068337215020073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337215020073

Keywords

Navigation