Skip to main content
Log in

Methods for preparation of transparent conductive diamond-like carbon films and mechanisms of conductivity formation

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Technology for obtaining transparent conductive diamond-like carbon films has been developed. Conductivity of the films is ensured by doping with nitrogen during the growth process or by preliminary deposition onto the substrate of a catalyst of nanostructure growth. Optical methods of control of the process which allow varying both the transparency and conductivity of the obtained coatings are described. The mechanisms of formation of conductivity in a dielectric carbon matrix were investigated. It is shown that in the presence of catalysts the conductivity of films can be described using a percolation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson, J., Mater. Sci. Eng. R, 2002, vol. 37, p. 129.

    Article  Google Scholar 

  2. Erdemir, A. and Donnet, C., J. Phys. D: Appl. Phys., 2006, vol. 39, p. R311.

    Article  Google Scholar 

  3. Voskanyan, S.S., Yengibaryan, Y.V., Karapetyan, K.G., and Panosyan, Zh.R., J. Contemp. Phys. (Armenian Ac. Sci.), 1999, vol. 34, no. 6, p.34.

    Google Scholar 

  4. Voskanyan, A.S. and Panosyan, Zh.R., J. Contemp. Phys. (Armenian Ac. Sci.), 2004, vol. 39, no.4, p. 42.

    Google Scholar 

  5. Pern, J., Touryan, K., Panosyan, Zh., and Gippius, A., Method and apparatus for making diamond-like carbon films, US Patent N 7459188 B2, (2008).

    Google Scholar 

  6. Kaskela, A., Transparent, conductive and flexible single-walled carbon nanotube films, Aalto University publication. Doctoral dissertations, 2013.

    Google Scholar 

  7. Sibinsski, M., Jakubowska, M., Znajdek, K., Sloma, M., and Guzowski, B., Optica Applicata, 2011, vol. XLI, p. 375.

    Google Scholar 

  8. Zhu, H., Wei, J., Wang, K., and Wu, D., Solar Energy Materials & Solar Cells, 2009, vol. 93, p. 1461.

    Article  Google Scholar 

  9. Zhmurikov, E.I. K voprosu o percolyatsionnoy provodimosti geterogennykh mesoskopicheskikh sistem (On the Problem of Percolation Conductivity of Heterogeneous Mesoscopic Systems), Novosibirsk: Budker INP, Sibirian Branch of RAS, 2005.

    Google Scholar 

  10. Panosyan, Zh.R., Darbasyan, A.T., Meliksetyan, V.A., Voskanyan, S.S., Voskanyan, A.S., Sahakyan, A.A., and Gzraryan, R.V., Thin Solid Films, 2009, vol. 517, p. 5404.

    Article  ADS  Google Scholar 

  11. Galakhov, V.R., Ponosov, Yu.S., Shamin, S.N., Rubshtein, A.P., Vladimirov, A.B., Yugov, V.A., and Trakhtenberg, I.Sh., Phys. Sol. State, 2008, vol. 50, p. 977.

    Article  ADS  Google Scholar 

  12. Alekseev, N.I. and Dyuzhev, G.A., ZhETF, 2005, vol. 75, p. 112.

    Google Scholar 

  13. Yamagata, Y., Sharma, A., Narayan, J., Mayo, R.M., Newman, J.V., and Ebihara, K., J. Appl. Phys., 2000, vol. 88, p. 6861.

    Article  ADS  Google Scholar 

  14. Sinel’nikov, B.M., Prokhoda, T.N., and Tarala, V.A., Vestnik SevKavGTU, 2006, no. 2, p. 5.

    Google Scholar 

  15. El-Brulsy, R.A., Abd Al-Halim, M.A., Abu-Hashem, A., Rashed, U.M., and Hassouba, M.A., Fizika Plasmy, 2012, vol. 38, p. 473.

    Google Scholar 

  16. Sanchez, N.A., Rincon, C., Zambrano, G., Galindo, H., and Prieto, P., Thin Solid Films, 2000, vol. 373, p. 247.

    Article  ADS  Google Scholar 

  17. Panosyan, Zh., Yengibaryan, Ye., Voskanyan, S., Darbasyan, A., and Arakelyan, A., Int. Conf. Laser Physics-2009, Ashtarak, Armenia, 2009, p.143.

    Google Scholar 

  18. Panosyan, Zh., Meliksetyan, A., Voskanyan, S., Yengibaryan, Y., Sahakyan, A., and Darbasyan, A., Diam. Relat. Mater., 2006, vol. 15, p. 394.

    Article  ADS  Google Scholar 

  19. Panosyan, Zh.R., Gharibyan, A.S., Sargsyan, A., Panosyan, H., Hayrapetyan, D.B., and Yengibaryan, Ye., Proc. of SPIE, 2010, vol. 7755, 77550Q.

    Article  ADS  Google Scholar 

  20. Gharibyan, A., Hayrapetyan, D.B., Panosyan, Zh., and Yengibaryan, Y., Appl. Optics, 2012, vol. 50, p. G69.

    Article  Google Scholar 

  21. Prikhod’ko, A.V. and Kon’kov, O.I., Phys. Sol. State, 2012, vol. 54, p. 642.

    Article  ADS  Google Scholar 

  22. Prikhod’ko, A.V. and Kon’kov, O.I., Phys. Sol. State, 2012, vol. 54, p. 2325.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. R. Panosyan.

Additional information

Original Russian Text © Zh.R. Panosyan, A.T. Darbasyan, S.S. Voskanyan, Y.V. Yengibaryan, 2014, published in Izvestiya NAN Armenii, Fizika, 2014, Vol. 49, No. 6, pp. 425–433.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panosyan, Z.R., Darbasyan, A.T., Voskanyan, S.S. et al. Methods for preparation of transparent conductive diamond-like carbon films and mechanisms of conductivity formation. J. Contemp. Phys. 49, 286–292 (2014). https://doi.org/10.3103/S1068337214060073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337214060073

Keywords

Navigation