Skip to main content
Log in

Helix-coil transition in biopolymers with multicomponent heterogeneity of energy and number of conformations

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

We consider the theory of helix-coil transition in heteropolymeric biopolymers with an arbitrary number of components in cases of heterogeneity with respect to both energy and number of conformations. The theory is based on the Generalized Model of Polypeptide Chain (GMPC) with employing the constrained annealing method. Expression for the free energy of heteropolymer is derived using averaged transfer-matrix of homopolymer GMPC with redefined energy and conformation parameters. We obtain an algorithm of calculation of the melting curve of a heteropolymeric system and compare that with the homopolymeric curve. We show that bimodal heterogeneity determines qualitatively the basic properties of melting of a random heteropolymer. We also show that heterogeneity with respect to energy and heterogeneity with respect to number of conformations provide essentially the same characteristics of melting curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poland, D.C. and Scheraga, H.A., The Theory of Helix-Coil Transition, New York: Academic, 1970.

    Google Scholar 

  2. Grosberg, Yu. and Khokhlov, A. R., Statistical Physics of Macromolecules, New York: AIP, 1994.

    Google Scholar 

  3. Cantor, R. and Shimmel, T. R., Biophysical Chemistry, San Francisco: Freeman, 1980.

    Google Scholar 

  4. Flory, P.J., Statistical Mechanics of Chain Molecules, New York: Interscience, 1969.

    Google Scholar 

  5. Wartell, R.M. and Benight, A.S., Phys. Rep., 1985, vol. 126, p. 67.

    Article  ADS  Google Scholar 

  6. Vedenov, A.A., Dykhne, A.M., and Frank-Kamenetskii, M.D., Usp. Fiz. Nauk (Russian), 1971, vol. 105, p. 479.

    Article  Google Scholar 

  7. Wada, A. and Suyama, A., Prog. Biophys. Mol. Biol., 1986, vol. 47, p. 113.

    Article  Google Scholar 

  8. Chalikian, T., Biopolymers, 2003, vol. 70, p. 492.

    Article  Google Scholar 

  9. Garel, T., Monthus, C., and Orland, H., Europhys. Lett., 2001, vol. 55, p. 132.

    Article  ADS  Google Scholar 

  10. Cule, D. and Hwa, T., Phys. Rev. Lett., 1997, vol. 79, p. 2375.

    Article  ADS  Google Scholar 

  11. Baiesi, M., Carlon, E., Orlandini, E., and Stella, A.L., e-print cond-mat/0207122.

  12. Peyrard, M., Nonlinearity, 2004, vol. 17, p. R1.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Barbi, M., Lepri, S., Peyrard, M., and Theodorakopoulos, N., Phys. Rev. E, 2003, vol. 68, p. 061909.

    Article  ADS  Google Scholar 

  14. Takano, M., Nagayama, K., and Suyama, A., J. Chem. Phys., 2001, vol. 116, p. 2219.

    Article  ADS  Google Scholar 

  15. Munoz, V. and Serrano, L., Biopolymers, 1997, vol. 41, p. 495.

    Article  Google Scholar 

  16. Zimm, B. H., Doty, P., and Iso, K., Proc. Natl. Acad. Sci. USA, 1959, vol. 45, p. 1601.

    Article  ADS  Google Scholar 

  17. Zimm, B.H. and Bragg, J.K., J. Chem. Phys., 1959, vol. 31, p. 526.

    Article  ADS  Google Scholar 

  18. Zimm, B.H., J. Chem. Phys., 1960, vol. 33, p. 1349.

    Article  ADS  Google Scholar 

  19. Zimm, B.H. and Rice, N., Mol. Phys., 1960, vol. 3, p. 391.

    Article  ADS  Google Scholar 

  20. Lifson, S. and Roig, A., J. Chem. Phys., 1961, vol. 34, p. 1963.

    Article  ADS  Google Scholar 

  21. Lifson, S. and Zimm, B.H., Biopolymers, 1963, vol. 1, p. 15.

    Article  Google Scholar 

  22. Lifson, S. and Allegra, J., Biopolymers, 1964, vol. 2, p. 65.

    Article  Google Scholar 

  23. Morozov, V.F., Mamasakhlisov, E.Sh., Hayryan, Sh.A., and Hu, C.-K., Physica A, 2000, vol. 281, p. 51.

    Article  ADS  Google Scholar 

  24. Morozov, V.F., Badasyan, A.V., Grigoryan, A.V., Sahakyan, M.A., and Mamasakhlisov, E.Sh., Biopolymers, 2004, vol. 75, p. 434.

    Article  Google Scholar 

  25. Tsarukyan, A.V., Tonoyan, Sh.A., Badasyan, A.V., et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2006, vol. 41, p. 54.

    Google Scholar 

  26. Tonoyan, Sh.A., Buryakina, T.Yu., Tsarukyan, A.V., Mamasakhlisov, Y.Sh., and Morozov, V.F., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 309.

    Article  ADS  Google Scholar 

  27. Tonoyn, Sh.A., Mirzakhanyan, A.S., Hayrapetyan, G.N., Tsarukyan, A.V., and Morozov, V.F., J. Contemp. Phys. (Armenian Ac. Sci.), 2010, vol. 45, p. 88.

    Article  ADS  Google Scholar 

  28. Badasyan, A.V., Grigoryan, A.V., Mamasakhlisov, E.Sh., Benight, A.S., and Morozov, V. F., J. Chem. Phys., 2005, vol. 123, p. 194701.

    Article  ADS  Google Scholar 

  29. Serva, M. and Paladin, G., Phys. Rev. Lett., 1993, vol 70, p. 105.

    Article  ADS  Google Scholar 

  30. Tonoyan, Sh.A., Mirzakhanyan, A.S., Mamasakhlisov, Y.Sh., and Morozov, V.F., J. Contemp. Phys. (Armenian Ac. Sci.), 2013, vol. 48, p. 236.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Tonoyan.

Additional information

Original Russian Text © Sh.A. Tonoyan, A.V. Asatryan, Y.Sh. Mamasakhlisov, V.F. Morozov, 2014, published in Izvestiya NAN Armenii, Fizika, 2014, Vol. 49, No. 3, pp. 209–218.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonoyan, S.A., Asatryan, A.V., Mamasakhlisov, Y.S. et al. Helix-coil transition in biopolymers with multicomponent heterogeneity of energy and number of conformations. J. Contemp. Phys. 49, 132–137 (2014). https://doi.org/10.3103/S1068337214030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337214030098

Keywords

Navigation