Skip to main content
Log in

On the theory of helix-coil transition in heterogeneous biopolymers. Constrained annealing method

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

A theory of helix-coil transition in DNA, heteropolymeric with respect to energies of H-bond formation, is considered. The theory is based on the Generalized Model of Polypeptide Chain (GMPC) with employing the constrained annealing method. Expression for the free energy of heteropolymer is derived using transfer-matrix of homopolymer with redefined energy parameter. The technique of calculation of broadening of melting interval depending on the GC-composition and hydrogen bonding energy of AT and GC pairs is developed. Two maxima are revealed on the differential melting curve of heteropolymer. The temperature dependence of the correlation length is considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poland, D.C. and Scheraga, H.A., The Theory of Helix-Coil Transition, New York: Academic, 1970.

    Google Scholar 

  2. Grosberg, Yu. and Khokhlov, A.R., Statistical Physics of Macromolecules, New York: AIP, 1994.

    Google Scholar 

  3. Cantor, R. and Shimmel, T.R., Biophysical Chemistry, San Francisco: Freeman, 1980.

    Google Scholar 

  4. Flory, P.J., Statistical Mechanics of Chain Molecules, New York: Interscience, 1969.

    Google Scholar 

  5. Wartell, R.M. and Benight, A.S., Phys. Rep., 1985, vol. 126, p. 67.

    Article  ADS  Google Scholar 

  6. Vedenov, A.A., Dykhne, A.M., and Frank-Kamenetskii, M.D., Usp. Fiz. Nauk (Rus.), 1971, vol. 105, p. 479.

    Article  Google Scholar 

  7. Wada, S. and Suyama, A., Prog. Biophys. Mol. Biol., 1986, vol. 47, p. 113.

    Article  Google Scholar 

  8. Chalikian T., Biopolymers, 2003, vol. 70, p. 492.

    Article  Google Scholar 

  9. Garel, T., Monthus, C., and Orland, H., Europhys. Lett., 2001, vol. 55, p. 132.

    Article  ADS  Google Scholar 

  10. Cule, D. and Hwa, T., Phys. Rev. Lett., 1997, vol. 79, p. 2375.

    Article  ADS  Google Scholar 

  11. Baiesi, M., Carlon, E., Orlandini, E., and Stella, A.L., http://arxiv.org/abs/cond-mat/0207122.

  12. Peyrard, M., Nonlinearity, 2004, vol. 17, p. R1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Barbi, M., Lepri, S., Peyrard, M., and Theodorakopoulos, N., Phys. Rev. E, 2003, vol. 68, p. 061909.

    Article  ADS  Google Scholar 

  14. Takano, M., Nagayama, K., and Suyama, A., J. Chem. Phys., 2001, vol. 116, 2219.

    Article  ADS  Google Scholar 

  15. Munoz, V. and Serrano, L., Biopolymers, 1997, vol. 41, p. 495.

    Article  Google Scholar 

  16. Zimm, B.H., Doty, P., and Iso, K., Proc. Natl. Acad. Sci. USA, 1959, vol. 45, p. 1601.

    Article  ADS  Google Scholar 

  17. Zimm, B.H. and Bragg, J.K., J. Chem. Phys., 1959, vol. 31, 526.

    Article  ADS  Google Scholar 

  18. Zimm, B.H., J. Chem. Phys., 1960, vol. 33, p. 1349.

    Article  ADS  Google Scholar 

  19. Zimm, B.H. and Rice, N., Mol. Phys., 1960, vol. 3, p. 391.

    Article  ADS  Google Scholar 

  20. Lifson, S. and Roig, A.J., Chem. Phys., 1961, vol. 34, p. 1963.

    ADS  Google Scholar 

  21. Lifson, S. and Zimm, B.H., Biopolymers, 1963, vol. 1, p. 15.

    Article  Google Scholar 

  22. Lifson, S. and Allegra, J., Biopolymers, 1964, vol. 2, p. 65.

    Article  Google Scholar 

  23. Morozov, V.F., Mamasakhlisov, E.Sh., Hayryan, Sh.A., and Hu, C.-K., Physica A, 2000, vol. 281, p. 51.

    Article  ADS  Google Scholar 

  24. Morozov, V.F., Badasyan, A.V., Grigoryan, A.V., Sahakyan, M.A., and Mamasakhlisov, E.Sh., Biopolymers, 2004, vol. 75, p. 434.

    Article  Google Scholar 

  25. Tsarukyan, A.V., Tonoyn, Sh.A., Badasyan, A.V., Grigoryan, A.V. Mamasakhlisov, Y.Sh., and Morozov, V.F., J. Contemp. Phys. (Armenian Ac. Sci.), 2006, vol. 41, p. 41.

    Google Scholar 

  26. Tonoyn, Sh.A., Buryakina, T.Yu., Tsarukyan, A.V., Mamasakhlisov, Y.Sh., and Morozov, V.F., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 309.

    Article  ADS  Google Scholar 

  27. Tonoyn, Sh.A., Mirzakhanyan, A.S., Hayrapetyan, G.N., Tsarukyan, A.V., and Morozov, V.F., J. Contemp. Phys. (Armenian Ac. Sci.), 2010, vol. 45, p. 88.

    Article  ADS  Google Scholar 

  28. Badasyan, A.V., Grigoryan, A.V., Mamasakhlisov, E.Sh., Benight, A.S., and Morozov, V.F., J. Chem. Phys., 2005, vol. 123, p. 194701.

    Article  ADS  Google Scholar 

  29. Serva, M. and Paladin, G., Phys. Rev. Lett., 1993, vol. 70, p. 105.

    Article  ADS  Google Scholar 

  30. Badasyan, A.V., Tonoyan, Sh.A., Tsarukyan, A.V., Mamasakhlisov, E.Sh., Benight, A.S., and Morozov, V.F., J. Chem. Phys., 2008, vol. 128, p. 195101.

    Article  ADS  Google Scholar 

  31. Frank-Kamenetski, M.D. and Vologodski, A.V., Nature, 1977, vol. 269, p. 729.

    Article  ADS  Google Scholar 

  32. Cuesta-Lopez, S., Europhys. Lett., 2009, vol. 87, p. 48009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Tonoyan.

Additional information

Original Russian Text © Sh. A. Tonoyan, A.S. Mirzakhanyan, Y.Sh. Mamasakhlisov, V.F. Morozov, 2013, published in Izvestiya NAN Armenii, Fizika, 2013, Vol. 48, No. 5, pp. 350–357.

About this article

Cite this article

Tonoyan, S.A., Mirzakhanyan, A.S., Mamasakhlisov, Y.S. et al. On the theory of helix-coil transition in heterogeneous biopolymers. Constrained annealing method. J. Contemp. Phys. 48, 236–242 (2013). https://doi.org/10.3103/S1068337213050083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337213050083

Keywords

Navigation