Skip to main content
Log in

Nonstationary theory of polarized light pulse propagation through a four-level resonant medium with allowance for nonlinear complex refractive index of medium

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Nonstationary theory of polarized light pulse propagation through the medium with resonant transition 1/2 -1/2 is developed with taking into account complexity of the medium nonlinear refractive index. The theory is developed based on the irreducible tensor formalism which allows diagonalizing relaxations matrix and introducing effective decay times associated with the population relaxation, as well as relaxation of coherence between magnetic sublevels of the resonant system. It is shown that as a result of interference of magnetic sublevels in the polarized radiation field the inversionless amplification of radiation occurs due to optical pumping process. The dependence of inversionless amplification on the line broadening and resonance detuning is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adonts, G.G. and Kanetsian, E.G., Opt. Appl., 2004, vol. XXXIV, p. 331.

    Google Scholar 

  2. Adonts, G.G. and Kanetsian, E.G., Book of the Conference “Beyond Einstein Physics for the 21st Century”, Switzerland, Bern, PP-55-TUTH, 2005, p. 39.

    Google Scholar 

  3. Agre, M.Y., Book of the Conference “Beyond Einstein Physics for the 21st Century”, Switzerland, Bern, PP-33-TUTH, 2005, p. 39.

    Google Scholar 

  4. Kuznetsova, T.V., Jarmoshenko, J.M., et al., Book of the Conference “Beyond Einstein Physics for the 21st Century”, Switzerland, Bern, PP-226-TUTH, 2005, p. 43.

    Google Scholar 

  5. Adonts, G.G. and Kanetsian, E.G., EOC topical meeting on nonlinear optics, France, Paris, 2006, p. 205.

    Google Scholar 

  6. Adonts, G.G. and Kanetsian, E.G., Optika i spektroskopiya, 2005, vol. 98, p. 368.

    Google Scholar 

  7. Sarkisyan, D. and Papoyan, A., Technical Digest of the XVI Int. Conf. on Coherent and Nonlinear Optics (ICONO’98), Russia, Moscow, 1998, p. 23.

    Google Scholar 

  8. Papoyan, A.V., Unanyan, R.G., and Bergmann, K., Verhandlungen der Deutshen Physikalishen Gessellschaft, 1999, vol. 4, p. 414.

    Google Scholar 

  9. Ignesti, E., Savalieri, S., Fini, L., et al., Laser Physics, 2010, vol. 20, p. 1132.

    Article  ADS  Google Scholar 

  10. Camacho, R.M., Pack, M.V., Howell, J.C., et al., Phys. Rev. Lett., 2007, vol. 98, p. 153601.

    Article  ADS  Google Scholar 

  11. Makarov, V.A., Pereshogin, L.A., and Potravkin, N.N., Optika i spektroskopiya, 2010, vol. 109, p. 778.

    Article  Google Scholar 

  12. Buffa, R., Cavalieri, S., and Tognetti, M.V., 2004, Phys. Rev. A, vol. 69, p. 033815.

    Article  ADS  Google Scholar 

  13. Saigin, M.Yu. and Chirkin, A.S., ZhETF, 2010, vol. 138, p. 16.

    Google Scholar 

  14. Kocharovskaya, O.A. and Khanin, Ya.I., Pis’ma v ZhETF, 1988, vol. 48, p. 581.

    ADS  Google Scholar 

  15. Scully, M.O., Phys. Rep., 1992, vol. 219, p. 191.

    Article  ADS  Google Scholar 

  16. Plastun, I.L., Optika i spektroskopiya, 2001, vol. 91, p. 158.

    Google Scholar 

  17. Adonts, G.G. and Marikyan, L.G., Optika i spektroskopiya, 2009, vol. 106, p. 798.

    Google Scholar 

  18. Adonts, G.G. Kanetsyan, E.G., and Arzakantsyan, M.A., Optika i spektroskopiya, 2012, vol. 113, p. 1.

    Google Scholar 

  19. Adonts, G.G. Kanetsyan, E.G., and Arzakantsyan, M.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2012, vol. 47, p. 222.

    Article  Google Scholar 

  20. Brzozowski, T.M., Brzozowska, M., et al., High resolution spectroscopy of cold, trapped atoms, Proc. Int. Conf. Laser Physics, Armenia, Ashtarak, 2008, p. 5.

    Google Scholar 

  21. Grigorian, G., Nikoghosyan, G., et al., Phys. Rev. A, 2009, vol. 80, p. 033402.

    Article  ADS  Google Scholar 

  22. Grigorian, G., Leroy, C., Pashayan-Leroy, Y., Guérin, S., and Jauslin, H.R., Proc. Int. Conf. Laser Physics, Armenia, Ashtarak, 2009, p. 9.

    Google Scholar 

  23. Gazazyan, E.A., Grigoryan, G.G., Chaltykyan, V.O., and Schraft, D., J. Contemp. Phys. (Armenian Ac. Sci.), 2012, vol. 47, p. 216.

    Article  Google Scholar 

  24. Yanke, E. and Emde, F., Tablitsy funktsiy s formulami i krivymi (Tables of Functions with Formulas and Curves), Moscow-Leningrad: GITTL, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Adonts.

Additional information

Original Russian Text © G.G. Adonts, M.A. Arzakantsyan, 2013, published in Izvestiya NAN Armenii, Fizika, 2013, Vol. 48, No. 5, pp. 318–322.

About this article

Cite this article

Adonts, G.G., Arzakantsyan, M.A. Nonstationary theory of polarized light pulse propagation through a four-level resonant medium with allowance for nonlinear complex refractive index of medium. J. Contemp. Phys. 48, 210–213 (2013). https://doi.org/10.3103/S1068337213050046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337213050046

Keywords

Navigation