Skip to main content
Log in

Entanglement of effectively coupled three atoms

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

For investigation of entanglement and thermodynamic properties of three coupled atoms the Dicke model is considered in the dispersive limit. Two qualitatively different regions differing in the sign of the effective coupling constant are shown. The vacuum induced Stark shift modifies strongly the physical results in these regions. In the region of negative coupling constant entanglement is more prominent: it is displayed in a wider range of temperature and atomic transition frequencies. Also the critical temperatures and the atomic transition frequencies corresponding to vanishing of entanglement are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amico, L., Fazio, R., Osterloh, A., and Vedral V., Rev. Mod. Phys., 2008, vol. 80, pp. 517.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Gëuhne, O. and Toth, G. Phys. Rep., 2009, vol. 474, pp. 1.

    Article  MathSciNet  ADS  Google Scholar 

  3. Horodecki, R. et al., Rev. Mod. Phys., 2009, vol. 81, pp. 865.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, R. Jozsa, C., Peres, A., and Wootters, W.K., Phys. Rev. Lett., 1993, vol. 70, pp. 1895.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Jin, X.-M. et al., Nature Photonics, 2010, vol. 4, pp. 376.

    Article  ADS  Google Scholar 

  6. Bjork, G., Laghaout, A., and Andersen, U.L., Phys. Rev. A, 2012, vol. 85, pp. 022316.

    Article  ADS  Google Scholar 

  7. Kim, J., Lee, J.-S., Lee, S., and Heong, C.C., Phys. Rev. A, 2000, vol. 62, pp. 022312.

    Article  ADS  Google Scholar 

  8. Brodutch, A. and Terno, D.R., Phys. Rev. A, 2011, vol. 83, pp. 010301(R).

    Article  ADS  Google Scholar 

  9. Sasaki, M. et al., Optics Express, 2011, vol. 19, pp. 10387.

    Article  ADS  Google Scholar 

  10. Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., and Traina, P., Phys. Rev. A, 2010, vol. 82, pp. 062309.

    Article  ADS  Google Scholar 

  11. Larsson H. and Johannesson, D., Phys. Rev. Lett., 2005, vol. 95, pp. 196406.

    Article  ADS  Google Scholar 

  12. Alba, V., Tagliacozzo, L., and Calabrese, P., Phys. Rev. B, 2010, vol. 81, pp. 060411(R).

    Article  ADS  Google Scholar 

  13. Arnesen, M.C., Bose, S., and Vedral, V., Phys. Rev. Lett., 2001, vol. 87, pp. 017901.

    Article  ADS  Google Scholar 

  14. Souza, A.M., Reis, M.S., Soares-Pinto, D.O., Oliveira, I.S., and Sarthour, R.S., Phys. Rev. B, vol. 77, pp. 104402 (2008).

    Article  ADS  Google Scholar 

  15. Rappoport, T.G., Ghivelder, L., Fernandes, J.C., Guimaraes, R.B., and Continentino, M.A., Phys. Rev. B, 2007, vol. 75, pp. 054422.

    Article  ADS  Google Scholar 

  16. Souza A.M. et al., Phys. Rev. B, 2009, vol. 79, pp. 054408.

    Article  MathSciNet  ADS  Google Scholar 

  17. Lee, K.C. et al., Science, 2011, vol. 334, pp. 1253.

    Article  ADS  Google Scholar 

  18. Ananikian, N.S., Ananikyan, L.N., Chakhmakhchyan L.A., and Kocharian, A.N., J. Phys. A, 2011, vol. 44, p.025001.

    Article  MathSciNet  ADS  Google Scholar 

  19. Ananikian, N., Burdik, C., and Lazaryan, H., J. Phys: Conf. Series, 2012, vol. 343, pp. 012065.

    Article  ADS  Google Scholar 

  20. Grigoryan, G.G., Nikoghosyan, G.V., Halfmann, T., Pashayan-Leroy, Y.T., Leroy, C., and Guérin, S., Phys. Rev. A, 2009, vol. 80, pp. 033402.

    Article  ADS  Google Scholar 

  21. Grigoryan, G.G., Pashayan-Leroy, Y.T., Leroy, C., and Guérin, S., Phys. Rev. A, 2009, vol. 79, pp. 013813.

    Article  ADS  Google Scholar 

  22. Grigoryan, G.G., Leroy, C., Pashayan-Leroy, Y., Chakhmakhchyan, L., Guérin, S., and Jauslin, H.R., Eur. Phys. J. D, 2012, vol. 66, pp. 256.

    Article  ADS  Google Scholar 

  23. Hepp, K. and H. Lieb, E., Phys. Rev. A, 1973, vol. 8, pp. 2517.

    Article  MathSciNet  ADS  Google Scholar 

  24. Wang, Y.K. and Hioe, F.T., Phys. Rev. A, 1973, vol. 7, pp. 831.

    Article  ADS  Google Scholar 

  25. Baumann, K., Mottl, R., Brennecke, F., and Esslinger, T., Phys. Rev. Lett., 2011, vol. 107, pp. 140402.

    Article  ADS  Google Scholar 

  26. Baumann, K., Guerlin, C., Brennecke, F., and Esslinger, T., Nature, 2010, vol. 464, pp. 1301.

    Article  ADS  Google Scholar 

  27. Furuya, K., Nemes, M.C., and Pellegrino, G.Q., Phys. Rev. Lett., 1998, vol. 80, pp. 5524.

    Article  ADS  Google Scholar 

  28. Angelo, R.M., Furuya, K., Nemes, M.C., and Pellegrino, G.Q., Phys. Rev. A, 2001, vol. 64, pp. 043801.

    Article  ADS  Google Scholar 

  29. Leonardi, C., Persico, F., and Vetri, G., Riv. Nuovo Cimento, 1986, vol. 9, pp. 1.

    MathSciNet  Google Scholar 

  30. Shore, B.W. and Knight, P.L., J. Mod. Opt., 1993, vol. 40, pp. 1195.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Zheng, S.-B., Phys. Rev. Lett., 2001, vol. 87, pp. 230404.

    Article  ADS  Google Scholar 

  32. Zheng, S.-B. and Guo, G.-C., Phys. Rev. A, 2001, vol. 63, pp. 044302; 2000, vol. 85, pp. 2392.

    Article  ADS  Google Scholar 

  33. Hill, S. and Wootters, W.K., Phys. Rev. Lett., 1997, vol. 78, pp. 5022.

    Article  ADS  Google Scholar 

  34. Wootters, W.K., Phys. Rev. Lett., 1998, vol. 80, 2245.

    Article  ADS  Google Scholar 

  35. Ananikian, N.S., Ananikyan, L.N., Chakhmakhchyan, L.A., and Rojas, O., J. Phys.: Condens. Matter, 2012, vol. 24, pp. 256001.

    Article  ADS  Google Scholar 

  36. Chakhmakhchyan, L., Ananikian, N., Ananikyan, L., and Burdik, C., J. Phys: Conf. Series, 2012, vol. 343, p. 012022.

    Article  ADS  Google Scholar 

  37. Frustrated Spin Systems, Diep H.T. (ed.), Singapore: World Scientific, 2004.

    MATH  Google Scholar 

  38. Gardner, J.S., Gingras, M.J.P., and Greedan, J.E., Rev. Mod. Phys., 2010, vol. 82, pp. 53.

    Article  ADS  Google Scholar 

  39. Morrison, S. and Parkins, A.S., J. Phys. B, 2008, vol. 41, pp. 195502.

    Article  ADS  Google Scholar 

  40. Chen, G., Liang, J.-Q., and Jia. S., Optics Express, 2009, vol. 17, pp. 19682.

    Article  ADS  Google Scholar 

  41. Zhou, Y.L., Ortner, M., and Rabl, P., Phys. Rev. A, 2011, vol. 84, pp. 052332.

    Article  ADS  Google Scholar 

  42. O’Connor, K.M. and Wootters, W.K., Phys. Rev. A, 2001, vol. 63, pp. 052302.

    Article  ADS  Google Scholar 

  43. Wang, X. and Zanardi, P., Phys. Lett. A, 2002, vol. 301, pp. 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Ray. A.R.P., J. Phys. A, 2009, vol. 42, pp. 412002.

    Article  MathSciNet  Google Scholar 

  45. Rau, A.R.P., Ali, M., and Alber, G., Eur. Phys. Lett., 2008, vol. 82, pp. 40002.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Chakhmakhchyan.

Additional information

Original Russian Text © L. A. Chakhmakhchyan, 2013, published in Izvestiya NAN Armenii, Fizika, 2013, Vol. 48, No. 5, pp. 295–304.

About this article

Cite this article

Chakhmakhchyan, L.A. Entanglement of effectively coupled three atoms. J. Contemp. Phys. 48, 193–199 (2013). https://doi.org/10.3103/S1068337213050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337213050010

Keywords

Navigation