Skip to main content
Log in

Near-field scanning microwave microscope application on Cu-phthalocyaninethin-film organic field-effect transistor

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

By the standard vacuum evaporation technique Cu(II)-phthalocyanine (Cu-Pc) thin films have been fabricated. For the samples, prepared at room temperature and post-annealed from 100°C to 350°C temperatures, optical spectra in the visible and near IR ranges have been measured. By using nondestructive near-field scanning microwave microscopy organic field-effect transistor (OFET) based on Cuphthalocyanine thin films have been investigated. The changes of crystal structure of Cuphthalocyanine thin film from the α- to the β-phase were controlled by the temperature of annealing. The values of holes’ mobility and the electroconductivity of Cu-phthalocyanine thin films have been obtained depending on the annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brutting, W., Physics of Organic Semiconductors, Weinheim: Wiley-VCH, 2005.

    Book  Google Scholar 

  2. Bao, Z. and Locklin, J., Organic Field-Effect Transistors, New York: CRC Press, 2007.

    Book  Google Scholar 

  3. Dutta, S., Vlahacos, C., Steinhauer, D., et al., Appl. Phys. Lett., 1999, vol. 74, p. 156.

    Article  ADS  Google Scholar 

  4. Knoll, B., Keilmann, F., Kramer, A., and Guckenberger, R., Appl. Phys. Lett., 1997, vol. 70, p. 2667.

    Article  ADS  Google Scholar 

  5. Kim, J., Kim, M., Kim, H., Song, D., Lee, K., and Friedman, B., Appl. Phys. Lett., 2003, vol. 83, p. 1026.

    Article  ADS  Google Scholar 

  6. Friedman, B., Gaspar, M., Kalachikov, S., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 9666.

    Article  Google Scholar 

  7. Friedman, B., Oetiker, B., and Lee, K., J. Kor. Phys. Soc., 2008, vol. 52, p. 588.

    Article  ADS  Google Scholar 

  8. Kim, M., Kim, S., Kim, J., et al., Rev. Sci. Instrum., 2003, vol. 74, p. 3675.

    Article  ADS  Google Scholar 

  9. Pozar, D.M., Microwave Engineering, New Jersey: John Wiley & Sons, 2005.

    Google Scholar 

  10. Jungyoon, E., Kim, S., Lim, E., Lee, K., Cha, D., and Friedman, B., Appl. Surf. Sci., 2003, vol. 205, p. 274.

    Article  Google Scholar 

  11. Karan, S. and Mallik, B., Sol. Stat. Commun., 2007, vol. 143, p. 289.

    Article  ADS  Google Scholar 

  12. Davydov, A., ZhETF, 1948, vol. 18, p. 210.

    Google Scholar 

  13. Brown, A.R., Jarrett, C.P., de Leeuw, D.M., Matters, M., Synth. Metals, 1997, vol. 88, p. 37.

    Article  Google Scholar 

  14. Singh, Th.B., Sariciftci, N.S., Jaiswal, M., and Menon, R., Handbook of Organic Electronics and Photonics, Nalwa, H.S., Ed., vol. 3, p. 153, Los Angeles: American Scientific Publishers, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.A. Sargsyan, 2011, published in Izvestiya NAN Armenii, Fizika, 2011, Vol. 46, No. 3, pp. 185–193.

About this article

Cite this article

Sargsyan, T.A. Near-field scanning microwave microscope application on Cu-phthalocyaninethin-film organic field-effect transistor. J. Contemp. Phys. 46, 119–124 (2011). https://doi.org/10.3103/S1068337211030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337211030066

Keywords

Navigation