Skip to main content
Log in

Preparation and characterization of nickel nanoparticles in different carbon matrices

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Using the solid-phase pyrolysis and chemical vapor deposition of nickel-phthalocyanine, we have fabricated ferromagnetic Ni nanoparticles in carbon matrices. The composition, structure, morphology, and magnetic properties of samples were investigated by means of scanning electron microscopy, energy dispersive X-ray microanalysis, X-ray diffraction technique, and ferromagnetic resonance. It is shown that the sizes of nanoparticles can be varied from ∼10 nm to ∼500 nm depending on the temperature and time of pyrolysis. The used method allows us to synthesize metal nanoparticles in different carbon matrices: in amorphous carbon plates, in graphitic capsules, and in carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gusev, A.I., Nanomaterialy, nanostructury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: Fizmatlit, 2005.

    Google Scholar 

  2. Kirin, I.S., Mishin, V.Ya., and Kolyadin, A.B., Zhurnal neorganicheskoy khimii, 1972, vol. 17, p. 348.

    Google Scholar 

  3. Stukan, R.A., Kirin, I.S., Mishin, V.Ya., and Kolyadin, A.B., Zhurnal neorganicheskoi khimii, 1972, vol. 17, p. 1923.

    Google Scholar 

  4. Araki, H., Kajii, H., and Yoshino, K., Jap. J. Appl. Phys., 1999, vol. 38, p. L836.

    Article  ADS  Google Scholar 

  5. Yang, Y., Huang, S., He, H., Mau, A.W.H., and Dai, L., J. Am. Chem. Soc., 1999, vol. 121, p. 10832.

    Article  Google Scholar 

  6. Huang, S., Dai, L., and Mau, A.W.H., J. Phys. Chem. B, 1999, vol. 103, p. 4223.

    Article  Google Scholar 

  7. Li, D.C., Dai, L., Mau, A.W.H., and Wang, Z.L., Chem. Phys. Lett., 2000, vol. 316, p. 349.

    Article  ADS  Google Scholar 

  8. Yudasaka, M., Kikuchi, R., Ohki, Y., and Yoshinara, S., Carbon, 1997, vol. 35, p. 195.

    Article  Google Scholar 

  9. Suenaga, K., Yudasaka, M., Colliex, C., Iijima, S., Chem. Phys. Lett., 2000, vol. 316, p. 365.

    Article  ADS  Google Scholar 

  10. Wang, X.B., Liu, Y.Q., Zhu, D.B., Chem. Commun., 2001, vol. 751.

  11. Wang, X.B., Lin, Y.Q., and Zhu, D.B., Chem. Phys. Lett., 2001, vol. 340, p. 419.

    Article  ADS  Google Scholar 

  12. Wang, X.B., Lin, Y.Q., and Zhu, D.B., Adv. Mater., 2002, vol. 14, p. 165.

    Article  Google Scholar 

  13. Kim, N.S., Bae, S.Y., and Park, J., Mat. Res. Soc. Symp. Proc., 2004, vol. 800, p. AA3.5.1.

    Google Scholar 

  14. Song, J., Sun, M., Chen, Q., Wang, J., Zhang, G., and Xue, Z., J. Phys. D: Appl. Phys., 2004, vol. 37, p. 5.

    Article  ADS  Google Scholar 

  15. Zhi, L., Gorelik, T., Friedlein, R., Wu, J., et al., Small, 2005, vol. 1, p. 798.

    Article  Google Scholar 

  16. Segura, R.A., Ibanez, W., Soto, R., Hevia, S., and Haberle, P., J. Nanosc. Nanotechn., 2006, vol. 6, p. 1945.

    Article  Google Scholar 

  17. Zhi, L., Kolb, U., and Müllen, K., New Carbon Materials, 2006, vol. 21, p. 109.

    Google Scholar 

  18. Klinke, C. and Kern, K. Nanotechnology, 2007, vol. 18, p. 215601.

    Article  ADS  Google Scholar 

  19. Sharoyan, V.E. and Harutyunyan, A.R., J. Contemp. Phys. (Armenian Ac. Sci.), 1993, vol. 28, no. 2, p. 28.

    Google Scholar 

  20. Liu, B.C., Lee, T.J., Park, J, et al., Chem. Phys. Lett., 2003, vol. 377, p. 55.

    Article  ADS  Google Scholar 

  21. Govindaraj, A. and Rao, C.N.R., Pure Appl. Chem., 2002, vol. 74, p. 1571.

    Article  Google Scholar 

  22. Huang, S. and Dai, L., J. Nanopart. Research, 2002, vol. 4, p. 145.

    Article  Google Scholar 

  23. Harutyunyan, A.R., Chen, G., and Eklung, P.C., Appl. Phys. Lett., 2003, vol. 82, p. 4794.

    Article  ADS  Google Scholar 

  24. Chen, Y. and Yu, J., Carbon, 2005, vol. 43, p. 3183.

    Article  Google Scholar 

  25. Gorodetsky, A.E., Evko, E.I., and Zakharov, A.P., FTT, 1976, vol. 80, p. 103.

    Google Scholar 

  26. Jao, J., Seraphin, S., Wang, X., and Withers, J.C. J. Appl. Phys., 1996, vol. 80, p. 103.

    Article  ADS  Google Scholar 

  27. Fedorov, V.B., Shorshorov, M.Kh., and Khakimova, D.K., Uglerod i ego vzaimodeystvie s metallami (Carbon and its Interaction with Metals), Moscow: Metalurgiya, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Manukyan, A.A. Mirzakhanyan, G.R. Badalyan, G.H. Shirinyan, E.G. Sharoyan, 2010, published in Izvestiya NAN Armenii, Fizika, 2010, Vol. 45, No. 3, pp. 202–209.

About this article

Cite this article

Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R. et al. Preparation and characterization of nickel nanoparticles in different carbon matrices. J. Contemp. Phys. 45, 132–136 (2010). https://doi.org/10.3103/S1068337210030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337210030060

Key words

Navigation