Bohlin transformation for a two-dimensional singular oscillator in a constant magnetic field

  • K. S. Aramyan


Bohlin transformation for a circular singular oscillator in a constant magnetic field is considered. It is shown that this transformation leads to a two-dimensional Kepler problem with an additional centrifugal potential from the constant magnetic field whose strength decreases inversely proportional to the distance from the center of attraction of the system. The energy spectrum of the considered system is obtained.

Key words

two-dimensional oscillator Bohlin transformation magnetic field 

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohlin, K., Bull. Astr., 1911, vol. 28, p. 144; Levi-Civita, T., Opere Mathematiche, 1906, vol. 2, p. 411.Google Scholar
  2. 2.
    Nersessian, A., Antonjan, V.M., and Tsulaia, M., Mod. Phys. Lett. A, 1966, vol. 11, p. 1605.CrossRefADSGoogle Scholar
  3. 3.
    Nersessian, A. and Pogosyan, G., Phys. Rev. A, 2001, vol. 63, p. 020103; Nersessian, A., Phys. Atom. Nucl., 2002, vol. 65, p. 1070 (arXiv:math-ph∖00110049).Google Scholar
  4. 4.
    Arnold, V.I., Gyuygens i Barrou, Nyuton i Guk (Hyugens and Barrow, Newton and Hooke), Moscow: Nauka, 1989.Google Scholar
  5. 5.
    Schonfield, J.F., Nucl. Phys. B, 1981, vol. 185, p. 117; Wilczek, F., Phys. Rev. Lett., 1982, vol. 48, p. 1144; ibid., 1982, vol. 49, p. 957; Goldhaber, A., Phys. Rev. Lett., 1982, vol. 49, p. 905.ADSGoogle Scholar
  6. 6.
    Aramyan, K.S. J. Contemp. Phys. (Armenian Ac. Sci.), 2006, vol. 41, no. 6, p. 16.Google Scholar
  7. 7.
    Belucci, S. and Nersessian, A., Phys. Rev. D, 2003, vol. 67, p. 065013; Belucci, S., Nersessian, A., and Yeranyan, A., Phys. Rev. D, 2004, vol. 70, p. 085013; ibid., 2004, vol. 70, p. 045006; Nersessian, A. and Yeranyan, A., J. Phys. A, 2004, vol. 37, p. 2791; Mardoyan, L. and Nersessian, A., Phys. Rev. B, 2005, vol. 72, p. 233303; Belucci, S., Mardoyan, L., and Nersessian, A., Phys. Lett. B, 2006, vol. 636, p. 137; Mardoyan, L., The Alternative Model of Spherical Oscillator (ArXiv:0708.1868); Aleksanyan, M.A., and Aramyan, K.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 49.Google Scholar
  8. 8.
    Aramyan, K.S., Theor. and Math. Phys., 2008 (in press).Google Scholar
  9. 9.
    Mardoyan, L.G., Pogosyan, G.S., Sisakyan, A.N., and Ter-Antonyan, V.M.,Kvantovye sistemy so skrytoy simmetriey (Quantum Systems with Hidden Symmetry), Moscow: Fizmatlit, 2006.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • K. S. Aramyan
    • 1
  1. 1.Artsakh State UniversityStepanakertNagorno-Karabagh Republic

Personalised recommendations