Hamiltonian description of systems with Lagrangians depending on extrinsic curvatures on curved spaces

  • D. A. Aghamalyan


Method of Hamiltonian description of systems on curved spaces, with reparametrizationinvariant generic Lagrangians (i.e., those which are functions of extrinsic curvatures of particle paths) is proposed based on use of Frenet formulas for a moving frame. It is shown that the algebras of constrains in the systems on constant-curvature spaces and Euclidean spaces are isomorphic to each other.

Key words

systems on curved space Lagrangian Hamiltonian description 

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berezin, F.A., Marinov, M.S., JETP Lett., 1975, vol. 21, p. 320; Ann. Phys. (N.Y), 1977, vol. 104, p. 336.ADSGoogle Scholar
  2. 2.
    Kirillov, A.A., Elements of The Theory of Representation, Berlin: Springer-Verlag, 1976; Kostant, B., Lecture. Notes in Mathematics, 1970, vol. 170, p. 87; Souriau, J.M., Structures des Systemes Dinamiques, Paris: Dunod, 1970.Google Scholar
  3. 3.
    Polyakov, A.M., Nucl. Phys. B, 1986, vol. 268, p. 406; Mod. Phys. Lett. A, 1988, vol. 3, p. 325.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Plyushchay, M.S., Nucl. Phys. B, 1991, vol. 362, p. 54; Kuznetsov, Y.A. and Plyushchay, M.S., Nucl. Phys. B, 1993, vol. 389, p. 181.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Plyushchay, M.S., Mod. Phys. Lett. A, 1989, vol. 4, p. 837; Mod. Phys. Lett. A, 1989, vol. 4, p. 2747; Phys. Lett. B, 1990, vol. 243, p. 383.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Zoller, D., Phys. Rev. Lett., 1990, vol. 65, p. 2236.CrossRefADSGoogle Scholar
  7. 7.
    Nesterenko, V.V., Feoli, A., and Scarpetta, G., Class. Quant. Grav., 1996, vol. 13, p. 1201.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Dirac, P.A.M., The Principles of Quantum Mechanics, Oxford: Clarendon, 1958.zbMATHGoogle Scholar
  9. 9.
    Nersessian, A., Theor. Math. Phys., 1998, vol. 117, p. 1214; Phys. Lett. B, 2000, vol. 473, p. 94.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Nersessian, A., Theor. Math. Phys., 2001, vol. 126, p. 147; Czech. J. Phys., 2000, vol. 50, p. 1309.Google Scholar
  11. 11.
    Postnikov, M.M., Lektsii po geometrii. Semestr III: Gladkiye mnogoobraziya (Lectures on Geometry. Term III: Smooth Manifolds), Moscow: Nauka, 1987.Google Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  • D. A. Aghamalyan
    • 1
  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations