Skip to main content
Log in

Magneto-Optics and Optomagnetism in Nanostructures

  • SURVEYS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A transition from uniform materials to metamaterials structured at scales that are smaller than the radiation wavelength makes it possible to control the interaction of light with matter due to the excitation and rearrangement of various optical modes of the structure. New phenomena and effects that arise during the interaction of light with nanostructured magnetic materials are described. Nanostructuring plays an important role both for magneto-optics (effect of magnetization of a material on a light wave), leading to a significant enhancement of magnetooptical effects and even emergence of new effects, and for optomagnetism (effect of laser pulses on magnetization), opening up a possibility of three-dimensional magnetic recording and excitation of exchange spin waves. If the size of the structure becomes on the order of tens or even units of nanometers, then quantum properties begin to appear, which are promising for the use of magnetic nanostructures for quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kimel, A., Zvezdin, A., Sharma, S., Shallcross, S., De Sousa, N., García-Martín, A., and Vavassori, P., J. Phys. D: Appl. Phys., 2022, vol. 55, no. 46, p. 463003.

  2. Ignatyeva, D.O., Krichevsky, D.M., Belotelov, V.I., Royer, F., Dash, S., and Levy, M., J. Appl. Phys., 2022, vol. 132, no. 10, p. 100902.

  3. Qin, J., Xia, S., Yang, W., Wang, H., Yan, W., Yang, Y., and Bi, L., Nanophotonics, 2022, vol. 11, no. 11, p. 2639.

    Article  CAS  Google Scholar 

  4. Barsukova, M.G., Shorokhov, A.S., Musorin, A.I., Neshev, D.N., Kivshar, Y.S., and Fedyanin, A.A., ACS Photonics, 2017, vol. 4, p. 2390.

    CAS  Google Scholar 

  5. Xia, S., Ignatyeva, D.O., Liu, Q., Wang, H., Yang, W., Qin, J., Chen, Y., Duan, H., Luo, Y., Novák, O., Veis, M., Deng, L., Belotelov, V.I., and Bi, L., Laser Photonics Rev., 2022, vol. 16, no. 8, p. 2200067.

  6. De Sousa, N., Froufe-Pérez, L.S., Saénz, J.J., and Garciá-Martín, A., Sci. Rep., 2016, vol. 6, p. 1.

    Article  Google Scholar 

  7. Zouros, G.P., Tsakmakidis, K.L., Kolezas, G.D., Almpanis, E., Baskourelos, K., and Stefański, T.P., Nanophotonics, 2020, vol. 9, p. 4033.

    Article  Google Scholar 

  8. Barsukova, M.G., Musorin, A.I., Shorokhov, A.S., and Fedyanin, A.A., APL Photonics, 2019, vol. 4, p. 016102.

  9. Musorin, A.I., Barsukova, M.G., Shorokhov, A.S., Luk’yanchuk, B.S., and Fedyanin, A.A., J. Magn. Magn. Mater., 2018, vol. 459, p. 165.

    Article  CAS  ADS  Google Scholar 

  10. Abendroth, J.M., Solomon, M.L., Barton, D.R., El Hadri, M.S., Fullerton, E.E., and Dionne, J.A., Adv. Opt. Mater., 2020, vol. 8, p. 1.

    Article  Google Scholar 

  11. Christofi, A., Kawaguchi, Y., Alù, A., and Khanikaev, A.B., Opt. Lett., 2018, vol. 43, p. 1838.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Xia, S., Ignatyeva, D.O., Liu, Q., Qin, J., Kang, T., Yang, W., Chen, Y., Duan, H., Deng, L., Long, D., Veis, M., Belotelov, V.I., and Bi, L., ACS Photonics, 2022, vol. 9, no. 4, p. 1240.

    Article  CAS  Google Scholar 

  13. Yang, W., Liu, Q., Wang, H., Chen, Y., Yang, R., Xia, S., Luo, Y., Deng, L., Qin, J., Duan, H., and Bi, L., Nat. Commun., 2022, vol. 13, p. 1719.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Belotelov, V.I., Kalish, A.N., Zvezdin, A.K., Gopal, A.V., and Vengurlekar, A.S., JOSA B, 2012, vol. 29, p. 294.

    Article  CAS  ADS  Google Scholar 

  15. Belotelov, V.I., Doskolovich, L.L., and Zvezdin, A.K., Phys. Rev. Lett., 2007, vol. 98, no. 7, p. 077401.

  16. Krichevsky, D.M., Kalish, A.N., Kozhaev, M.A., Sylgacheva, D.A., Kuzmichev, A.N., Dagesyan, S.A., Achanta, V.G., Popova, E., Keller, N., and Belotelov, V.I., Phys. Rev. B, 2020, vol. 102, no. 14, p. 144408.

  17. Gamet, E., Varghese, B., Verrier, I., and Royer, F., J. Phys. D: Appl. Phys., 2017, vol. 50, p. 495105.

  18. Royer, F., Varghese, B., Gamet, E., Neveu, S., Jourlin, Y., and Jamon, D., ACS Omega, 2020, vol. 5, p. 2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bsawmaii, L., Gamet, E., Royer, F., Neveu, S., and Jamon, D., Opt. Express, 2020, vol. 28, p. 8436.

    Article  PubMed  ADS  Google Scholar 

  20. Voronov, A.A., Ignatieva, D.O., Karki, D., Kozhaev, M.A., Kalish, A.N., Levi, M., and Belotelov, V.I., JETP Lett., 2020, vol. 112, p. 720.

    Article  CAS  ADS  Google Scholar 

  21. Zimnyakova, P.E., Ignatyeva, D.O., Karki, D., Voronov, A.A., Shaposhnikov, A.N., Berzhansky, V.N., and Belotelov, V.I., Nanophotonics, 2021, vol. 11, no. 1, p. 119.

    Article  Google Scholar 

  22. Belotelov, V.I., Kreilkamp, L.E., Kalish, A.N., Akimov, I.A., Bykov, D.A., Kasture, S., Yallapragada, V.J., Gopal, A.V., Grishin, A.M., Khartsev, S.I., Nur-E-Alam, M., Vasiliev, M., Doskolovich, L.L., Yakovlev, D.R., Alameh, K., Zvezdin, A.K., and Bayer, M., Phys. Rev. B, 2014, vol. 89, p. 045118.

  23. Khramova, A.E., Ignatyeva, D.O., Kozhaev, M.A., Dagesyan, S.A., Berzhansky, V.N., Shaposhnikov, A.N., and Belotelov, V.I., Opt. Express, 2019, vol. 27, no. 23, p. 33170.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Belotelov, V.I., Bykov, D.A., Doskolovich, L.L., Kalish, A.N., Kotov, V.A., and Zvezdin, A.K., Opt. Lett., 2009, vol. 34, p. 398.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Voronov, A.A., Karki, D., Ignatyeva, D.O., Kozhaev, M.A., Levy, M., and Belotelov, V.I., Opt. Express, 2020, vol. 28, p. 17988.

    Article  PubMed  ADS  Google Scholar 

  26. Bsawmaii, L., Gamet, E., Neveu, S., Jamon, D., and Royer, F., Opt. Mater. Express, 2022, vol. 12, p. 513.

    Article  CAS  ADS  Google Scholar 

  27. Krichevsky, D.M., Xia, S., Mandrik, M.P., Ignatyeva, D.O., Bi, L., and Belotelov, V.I., Nanomaterials, 2021, vol. 11, no. 11, p. 2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borovkova, O.V., Hashim, H., Ignatyeva, D.O., Kozhaev, M.A., Kalish, A.N., Dagesyan, S.A., and Belotelov, V.I., Phys. Rev. B, 2020, vol. 102, no. 8, p. 081405.

  29. Ignatyeva, D.O., Karki, D., Voronov, A.A., Kozhaev, M.A., Krichevsky, D.M., Chernov, A.I., Levy, M., and Belotelov, V.I., Nat. Commun., 2020, vol. 11, p. 5487.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Chernov, A.I., Kozhaev, M.A., Ignatyeva, D.O., Beginin, E.N., Sadovnikov, A.V., Voronov, A.A., Karki, D., Levy, M., and Belotelov, V.I., Nano Lett., 2020, vol. 20, p. 5259.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Kirilyuk, A., Kimel, A.V., and Rasing, T., Rev. Mod. Phys., 2010, vol. 82, no. 3, p. 2731.

    Article  ADS  Google Scholar 

  32. Krichevsky, D.M., Ignatyeva, D.O., Ozerov, V.A., and Belotelov, V.I., Phys. Rev. Appl., 2021, vol. 15, p. 034085.

  33. Belotelov, V.I., and Zvezdin, A.K., Phys. Rev. B, 2012, vol. 86, p. 155133.

  34. Kolodny, S., Yudin, D., and Iorsh, I., Nanoscale, 2019, vol. 11, p. 2003.

    Article  CAS  PubMed  Google Scholar 

  35. Chekhov, A.L., Stognij, A.I., Satoh, T., Murzina, T.V., Razdolski, I., and Stupakiewicz, A., Nano Lett., 2018, vol. 18, p. 2970.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zimnyakova, P.E., Ignatyeva, D.O., Kalish, A.N., Han, X., and Belotelov, V.I., Opt. Lett., 2022, vol. 47, no. 23, p. 6049.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Inoue, M., Arai, K., Fujii, T., and Abe, M., J. Appl. Phys., 1999, vol. 85, p. 5768.

    Article  CAS  ADS  Google Scholar 

  38. Steel, M.J., Levy, M., and Osgood, R.M., IEEE Photonics Technol. Lett., 2000, vol. 12, p. 1171.

    Article  ADS  Google Scholar 

  39. Inoue, M., Levy, M., and Baryshev, A.V., Magnetophotonics: From Theory to Applications, Berlin: Springer, 2013.

    Book  Google Scholar 

  40. Goto, T., Baryshev, A.V., Inoue, M., Dorofeenko, A.V., Merzlikin, A.M., Vinogradov, A.P., and Granovsky, A.B., Phys. Rev. B, 2009, vol. 79, no. 12, p. 125103.

  41. Goto, T., Dorofeenko, A.V., Merzlikin, A.M., Baryshev, A.V., Vinogradov, A.P., Inoue, M., and Granovsky, A.B., Phys. Rev. Lett., 2008, vol. 101, no. 11, p. 113902.

  42. Ignatyeva, D.O., Golovko, P.V., and Belotelov, V.I., Magnetochemistry, 2023, vol. 9, no. 2, p. 54.

    Article  Google Scholar 

  43. Ignatyeva, D.O., and Belotelov, V.I., Opt. Lett., 2020, vol. 45, no. 23, p. 6422.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Golovko, P.V., Ignatyeva, D.O., Kalish, A.N., and Belotelov, V.I., Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, p. 25.

    Article  CAS  Google Scholar 

  45. Kozhaev, M.A., Chernov, A.I., Sylgacheva, D.A., and Belotelov, V.I., Sci. Rep., 2018, vol. 8, p. 11435.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  46. Vasiliev, M., Nur-E-Alam, M., Kotov, V.A., Alameh, K., Belotelov, V.I., Burkov, V.I., and Zvezdin, A.K., Opt. Express, 2009, vol. 17, p. 19519.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Sylgacheva, D.A., Khokhlov, N.E., Gerevenkov, P.I., and Belotelov, V.I., Nanophotonics, 2022, vol. 11, no. 13, p. 3169.

    Article  CAS  Google Scholar 

  48. Gurevich, A.G., and Melkov, G.A., Magnetization Oscillation and Waves, Boca Raton, FL: CRC Press, 1996.

    Google Scholar 

  49. Ozerov, V.A. et al., J. Magn. Magn. Mater., 2022, vol. 543, p. 168167.

  50. Krichevsky D.M. et al., arXiv preprint arXiv:2310.01984, 2023.

  51. Shayegan, K.J., Zhao, B., Kim, Y., Fan, S., and Atwater, H.A., Sci. Adv., 2022, vol. 8, eabm4308.

  52. Rizal, C., Manera, M.G., Ignatyeva, D.O., Mejía-Salazar, J.R., Rella, R., Belotelov, V.I., and Maccaferri, N., J. Appl. Phys., 2021, vol. 130, no. 23, p. 230901.

  53. Homola, J. and Piliarik, M., Surface Plasmon Resonance (SPR) Sensors, Berlin: Springer, 2006, pp. 45–67.

    Book  Google Scholar 

  54. Ignatyeva, D.O., Knyazev, G.A., Kapralov, P.O., Dietler, G., Sekatskii, S.K., and Belotelov, V.I., Sci. Rep., 2016, vol. 6, no. 1, p. 28077.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Ignatyeva, D.O., Kapralov, P.O., Knyazev, G.A., Sekatskii, S.K., Dietler, G., Nur-E-Alam, M., Vasiliev, M., Alameh, K., and Belotelov, V.I., JETP Lett., 2016, vol. 104, p. 679.

    Article  CAS  ADS  Google Scholar 

  56. Borovkova, O.V., Ignatyeva, D.O., Sekatskii, S.K., Karabchevsky, A., and Belotelov, V.I., Photonics Research, 2020, vol. 8, no. 1, p. 57.

    Article  CAS  Google Scholar 

  57. Ignatyeva, D.O., Knyazev, G.A., Kalish, A.N., Chernov, A.I., and Belotelov, V.I., J. Phys. D: Appl. Phys., 2021, vol. 54, no. 29, p. 295001.

  58. Belyaev, V.K., Rodionova, V.V., Grunin, A.A., Inoue, M., and Fedyanin, A.A., Sci. Rep., 2020, vol. 10, no. 1, p. 7133.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Ignatyeva, D.O. and Belotelov, V.I., Nanomaterials, 2022, vol. 12, no. 23, p. 4180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dutta, A., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., and Marinero, E.E., Opt. Mater. Express, 2017, vol. 7, no. 12, p. 4316.

    Article  CAS  ADS  Google Scholar 

  61. Chu, A.H., Beauchamp, B., Shah, D., Boltasseva, A., Shalaev, V.M., and Marinero, E.E., Opt. Mater. Express, 2020, vol. 10, no. 12, p. 3107.

    Article  CAS  ADS  Google Scholar 

  62. Ignatyeva, D.O., Davies, C.S., Sylgacheva, D.A., Tsukamoto, A., Yoshikawa, H., Kapralov, P.O., and Kimel, A.V., Nat. Commun., 2019, vol. 10, no. 1, p. 4786.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Borovkova, O.V., Ignatyeva, D.O., and Belotelov, V.I., Sci. Rep., 2021, vol. 11, no. 1, p. 2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krichevsky, D.M., Gusev, N.A., Ignatyeva, D.O., Prisyazhnyuk, A.V., Semuk, E.Yu., Polulyakh, S.N., Berzhansky, V.N., Zvezdin, A.K., and Belotelov, V.I., Phys. Rev. B, 2023, vol. 108, no. 17, p. 174442. https://doi.org/10.1103/PhysRevB.108.174442

  65. Clark, A.E. and Callen, E., J. Appl. Phys., 1968, vol. 39, p. 5972.

    Article  CAS  ADS  Google Scholar 

  66. Davydova, M.D., Zvezdin, K.A., Kimel, A.V., and Zvezdin, A.K., J. Phys. Condens. Matter, 2020, vol. 32, p. 01LT01.

  67. Davydova, M.D., Zvezdin, K.A., Becker, J., Kimel, A.V., and Zvezdin, A.K., Phys. Rev. B, 2019, vol. 100, p. 064409.

  68. Sabdenov, Ch.K., Davydova, M.D., Zvezdin, K.A., and Zvezdin, A.K., Low Temp. Phys., 2017, vol. 43, p. 551.

    Article  CAS  ADS  Google Scholar 

  69. Zvezdin, A.K. and Popkov, A.F., Solid State Phys., 1974, vol. 16, p. 1082.

    CAS  Google Scholar 

  70. Parchenko, S., Satoh, T., Yoshimine, I., and Stupakiewicz, A., Appl. Phys. Lett., 2016, vol. 108, p. 1.

    Article  Google Scholar 

  71. Parchenko, S., Stupakiewicz, A., Yoshimine, I., Satoh, T., and Maziewski, A., Appl. Phys. Lett., 2013, vol. 103, p. 1.

    Article  Google Scholar 

  72. Reid, A.H.M., Kimel, A.V., Kirilyuk, A., Gregg, J.F., and Rasing, Th., Phys. Rev. Lett., 2010, vol. 105, p. 107402.

  73. Deb, M., Molho, P., Barbara, B., and Bigot, J.Y., Phys. Rev. B, 2018, vol. 97, p. 1.

    Google Scholar 

  74. Deb, M., Molho, P., Barbara, B., and Bigot, J.Y., Phys. Rev. B, 2016, vol. 94, p. 1.

    Article  Google Scholar 

  75. Kaplan, J. and Kittel, C., J. Chem. Phys., 1953, vol. 21, p. 760.

    Article  CAS  ADS  Google Scholar 

  76. Kittel, C., Phys. Rev., 1948, vol. 73, p. 155.

    Article  CAS  ADS  Google Scholar 

  77. Deb, M., Molho, P., and Barbara, B., Phys. Rev. B, 2022, vol. 105, p. 014432.

  78. Sahoo, R., Wollmann, L., Selle, S., and Nayak, A.K., Adv. Mater., 2016, vol. 28, p. 8499.

    Article  CAS  PubMed  Google Scholar 

  79. Kumar, V., Kumar, N., Reehuis, M., and Felser, C., Phys. Rev. B, 2020, vol. 101, p. 014424.

  80. Choi, W.-Y., Yoo, W., and Jung, M.-H., NPG Asia Mater., 2021, vol. 13, p. 79.

    Article  CAS  ADS  Google Scholar 

  81. Hirata, Y., Kim, D.-H., Kim, S.K., and Ono, T., Nat. Nanotechnol., 2019, vol. 14, p. 232.

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Céspedes-Berrocal, D., Damas, H., Petit-Watelot, S., and Rojas-Sanchez, J.-C., Adv. Mater., 2021, vol. 33, p. 2007047.

  83. Belotelov, V.I., Ozerov, V.A., and Zvezdin, A.K., Pis’ma Zh. Eksp. Teor. Fiz., 2023 (in press).

  84. Levy, M., Borovkova, O.V., Sheidler, C., Blasiola, B., Karki, D., Jomard, F., Kozhaev, M.A., Popova, E., Keller, N., and Belotelov, V.I., Optica, 2019, vol. 6, no. 5, p. 642.

    Article  CAS  ADS  Google Scholar 

  85. Zvezdin, A.K. and Mukhin, A.A., Kratk. Soobshch. Fiz., 1981, no. 12, p. 10.

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Megagrant project no. 075-15-2022-1108, chapter 7), Russian Science Foundation (chapters 3–5 by the project no. 21-72-10020, and chapter 6 by project no. 23-62-10024). D.O. and V.I. also acknowledge the support by the Moscow State University Development Program (chapters 1,2 by the project no. 23A-Sh06-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Belotelov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatyeva, D.O., Prisyazhnyuk, A.V., Krichevsky, D.M. et al. Magneto-Optics and Optomagnetism in Nanostructures. Bull. Lebedev Phys. Inst. 50 (Suppl 12), S1297–S1311 (2023). https://doi.org/10.3103/S106833562370001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833562370001X

Keywords:

Navigation