Skip to main content
Log in

X-ray Contrast Properties of Bismuth-Based Nanoformulations

  • NANOSTRUCTURES
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The possibility of using elemental bismuth nanoparticles as sensitizers for radiation therapy and computed tomography contrast agents is investigated. A comparative analysis of the X-ray contrast properties of bismuth nanoparticles with classical gold nanoparticles and bismuth oxychloride nanosheets is carried out. It is shown that laser-synthesized bismuth nanoparticles demonstrate higher X-ray contrast efficiency compared to traditional gold nanoparticles; they also have X-ray contrast properties similar to those of chemically synthesized analogues based on bismuth oxychloride nanosheets. Unique physicochemical characteristics in combination with high radiopaque properties of laser-synthesized bismuth nanoparticles form a new promising alternative to traditional sensitizers for radiation theranostics of oncological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lee, N., Choi, S.H., and Hyeon, T., Adv. Mater., 2013, vol. 25, p. 2641.

    Article  CAS  PubMed  Google Scholar 

  2. Bi, H., He, F., Dong, Y., Yang, D., Dai, Y., Xu, L., Lv, R., Gai, S., Yang, P., and Lin, J., Chem. Mater., 2018, vol. 30, p. 3301.

    Article  CAS  Google Scholar 

  3. Yu, X., Li, A., Zhao, C., Yang, K., et al., ACS Nano, 2017, vol. 11, p. 3990.

    Article  CAS  PubMed  Google Scholar 

  4. Song, G., Cheng, L., Chao, Y., Yang, K., and Liu, Z., Adv. Mater., 2017, vol. 29, p. 1700996.

  5. Deng, J., Xu, S., Hu, W., Xun, X., Zheng, L., and Su, M., Biomaterials, 2018, vol. 154, p. 24.

    Article  CAS  PubMed  Google Scholar 

  6. De La Vega, J.C. and Häfeli, U.O., CMMI, 2015, vol. 10, p. 81.

    CAS  PubMed  Google Scholar 

  7. Zelepukin, I.V., Ivanov, I.N., Mirkasymov, A.B., Shevchenko, K.G., Popov, A.A., Prasad, P.N., Kaba-shin, A.V., and Deyev, S.M., JCR, 2022, vol. 349, p. 475.

    Article  CAS  Google Scholar 

  8. Liu, C., Zhang, L., Chen, X., Li, S., Han, Q., Li, L., Wang, C., Chem. Eng. J., 2020, vol. 382, p. 122720.

  9. Bulmahn, J.C., Tikhonowski, G., Popov, A.A., Kuzmin, A., Klimentov, S.M., Kabashin, A.V., and Prasad, P.N., Nanomaterials, 2020, vol. 10, p. 1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fojtik, A. and Henglein, A., Ber. Bunsen Ges. Phys. Chem., 1993, vol. 97, p. 252.

    Article  CAS  Google Scholar 

  11. Balasubramanian, S.K., Yang, L., Yung, L.-Y.L., Ong, C.-N., Ong, W.-Y., and Yu, L.E., Biomaterials, 2010, vol. 31, p. 9023.

    Article  CAS  PubMed  Google Scholar 

  12. Goodman, C.M., McCusker, C.D., Yilmaz, T., and Rotello, V.M., Bioconjugate Chem., 2004, vol. 15, p. 897.

    Article  CAS  Google Scholar 

  13. Sibbald, S.M., Chumanov, G., and Cotton, M.T., J. Phys. Chem., 1996, vol. 100, p. 4672.

    Article  CAS  Google Scholar 

  14. Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., and Sawabe, H., J. Phys. Chem. B, 2001, vol. 105, p. 5114.

    Article  Google Scholar 

  15. Dolgaev, S.I., Simakin, A.V., Voronov, V.V., Shafeev, G.A., and Bozon-Verduraz, F., Appl. Surf. Sci., 2002, vol. 186, p. 546.

    Article  CAS  ADS  Google Scholar 

  16. Kabashin, A.V. and Meunier, M., J. Appl. Phys., 2003, vol. 94, p. 7941.

    Article  CAS  ADS  Google Scholar 

  17. Kabashin, A.V. and Meunier, M., J. Phys. Conf. Ser., 2007, vol. 59, p. 354.

    Article  CAS  ADS  Google Scholar 

  18. Zhang, D., Gökce, B., and Barcikowski, S., Chem. Rev., 2017, vol. 117, p. 3990.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J., Chaker, M., and Ma, D., J. Colloid. Interface Sci., 2017, vol. 489, p. 138.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Petridis, C., Savva, K., Kymakis, E., and Stratakis, E., J. Colloid Interface Sci., 2017, vol. 489, p. 28.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Kabashin, A.V. and Timoshenko, V.Y., Nanomedicine, 2016, vol. 11, p. 2247.

    Article  CAS  PubMed  Google Scholar 

  22. Kabashin, A.V., Singh, A., Swihart, M.T., Zavestovskaya, I.N., and Prasad, P.N., ACS Nanomedicine, 2019, vol. 13, p. 9841.

    CAS  Google Scholar 

  23. Kögler, M., Ryabchikov, Y.V., Uusitalo, S., Popov, A., Popov, A., Tselikov, G., Välimaa, A.-L., Al-Kattan, A., Hiltunen, J., Laitinen, R., Neubauer, P., Meglinski, I., Kabashin, A.V., J. Biophotonics, 2018, vol. 11, e201700225.

  24. Popov, A.A., Tselikov, G., Dumas, N., Berard, C., Metwally, K., Jones, N., Al-Kattan, A., Larrat, B., Braguer, D., Mensah, S., Da Silva, A., Estève, M.-A., and Kabashin, A.V., Sci. Rep., 2019, vol. 9, p. 1194.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. Popov, A.A., Tikhonowski, G.V., Shakhov, P.V., Popova-Kuznetsova, E.A., Tselikov, G.I., Romanov, R.I., Markeev, A.M., Klimentov, S.M., and Kabashin, A.V., Nanomaterials, 2022, vol. 12, p. 1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pastukhov, A.I., Belyaev, I.B., Bulmahn, J.C., Zelepukin, I.V., Popov, A.A., Zavestovskaya, I.N., Klimentov, S.M., Deyev, S.M., Prasad, P.N., and Kabashin, A.V., Sci. Rep., 2022, vol. 12, p. 9129.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Zelepukin, I.V., Popov, A.A., Shipunova, V.O., Tikhonowski, G.V., Mirkasymov, A.B., Popova-Kuznetsova, E.A., Klimentov, S.M., Kabashin, A.V., and Deyev, S.M., Mater. Sci. Eng. C, 2021, vol. 120, p. 111717.

  28. Kharin, A.Yu., Lysenko, V.V., Rogov, A., Ryabchikov, Y.V., Geloen, A., Tishchenko, I., Marty, O., Sennikov, P.G., Kornev, R.A., Zavestovskaya, I.N., Kabashin, A.V., and Timoshenko, V.Yu., Adv. Opt. Mater., 2019, vol. 7, p. 1801728.

  29. Petriev, V.M., Tischenko, V.K., Mikhailovskaya, A.A., Popov, A.A., Tselikov, G., Zelepukin, I., Deyev, S.M., Kaprin, A.D., Ivanov, S., Timoshenko, V.Yu., Prasad, P.N., Zavestovskaya, I.N., and Kabashin, A.V., Sci. Rep., 2019, vol. 9, p. 2017.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Tselikov, G.I., Ermolaev, G.A., Popov, A.A., Tikhonowski, G.V., Panova, D.A., Taradin, A.S., Vyshnevyy, A.A., Syuy, A.V., Klimentov, S.M., Novikov, S.M., Evlyukhin, A.B., Kabashin, A.V., Arsenin, A.V., Novoselov, K.S., and Volkov, V.S., PNAS, 2022, vol. 119, no. 39, e2208830119.

  31. Al-Kattan, A., Tselikov, G., Metwally, K., Popov, A.A., Mensah, S., and Kabashin, A.V., Nanomaterials, 2021, vol. 11, p. 592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Popov, A.A., Swiatkowska-Warkocka, Z., Marszalek, M., Tselikov, G., Zelepukin, I.V., Al-Kattan, A., Deyev, S.M., Klimentov, S.M., Itina, T.E., and Kabashin, A.V., Nanomaterials, 2022, vol. 12, p. 649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sylvestre, J.-P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., and Luong, J., J. Phys. Chem. B, 2004, vol. 108, p. 16864.

    Article  CAS  Google Scholar 

  34. Hoshyar, N., Gray, S., Han, H., and Bao, G., Nanomedicine, 2016, vol. 11, p. 673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hainfeld, J.F., Slatkin, D.N., Focella, T.M., and Smilowitz, H.M., Br. J. Radiol., 2006, vol. 79, p. 248.

    Article  CAS  PubMed  Google Scholar 

  36. Bailly, A.-L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A.V., Braguer, D., and Esteve, M.-A., Sci. Rep., 2019, vol. 9, p. 12890.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Skribitsky, V.A., Pozdniakova, N.V., Lipengolts, A.A., Popov, A.A., Tikhonowski, G.V., Finogenova, Yu.A., Smirnova, A.V., and Grigorieva, E.Yu., Biophysics (Oxford), 2022, vol. 67, p. 22.

    Article  CAS  Google Scholar 

  38. Fu, J., Guo, J., Qin, A., Yu, X., Zhang, Q., Lei, X., Huang, Y., Chen, M., Li, J., Zhang, Y., Liu, J., Dang, Y., Wu, D., Zhao, X., Lin, Z., Lin, Y., Li, S., and Zhang, L., J. Nanobiotechnol., 2020, vol. 18, p. 110.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Ministry of Science and Higher Education of the Russian Federation for providing materials for laser synthesis (agreement no. 075-15-2021-1347), as well as for providing infrastructure (grant FSWU-2023–0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Savinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Derbov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinov, M.S., Griaznova, O.Y., Tikhonowski, G.V. et al. X-ray Contrast Properties of Bismuth-Based Nanoformulations. Bull. Lebedev Phys. Inst. 50 (Suppl 11), S1265–S1271 (2023). https://doi.org/10.3103/S1068335623220141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623220141

Keywords:

Navigation