Skip to main content
Log in

Monitoring the Temperature of Silicon Nanoparticles in Liquid using Raman Scattering Excited by Nanosecond Pulsed Laser Radiation

  • BIOPHOTONICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Photoinduced pulsed heating of a suspension of silicon nanoparticles (NPs) excited by continuous-wave (CW) and pulsed nanosecond laser radiation was studied using Raman spectroscopy (RS). Based on the intensity ratio of the Stokes and anti-Stokes components of Raman scattering, the temperatures of the NPs and the liquid (alcohol) in the suspension were determined. It was found that silicon NPs heat up more than the surrounding liquid, which is due to their higher absorption coefficient at the excitation wavelength. Under heating by nanosecond laser pulses, the Raman method reveals strong short-term overheating of both the NPs and the surrounding liquid, but the time-average temperature of the suspension remains low. The results show that Raman spectroscopy is a convenient noncontact method for simultaneous temperature monitoring of both nanoparticles and the surrounding liquid, which is important for biomedical applications of nanoparticles, in particular in photothermal cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ischenko, A.A., Fetisov, G.V., and Aslalnov, L.A., Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control, Boca Raton: CRC Press, 2014.

    Book  Google Scholar 

  2. Osminkina, L.A. and Timoshenko, V.Yu., Mesoporous Biomater., 2016, vol. 3, no. 39, p. 48.

    Google Scholar 

  3. Timoshenko, V.Yu., Kudryavtsev, A.A., Osminkina, L.A., Vorontsov, A.S., Ryabchikov, Yu.V., Belogorokhov, I.A., Kovalev, D., and Kashkarov, P.K., JETP Letters, 2006, vol. 83, no. 9, p. 423.

    Article  Google Scholar 

  4. Tamarov, K.P., Osminkina, L.A., Zinovyev, S.V., Maximova, K.A., Kargina, J.V., Gongalsky, M.B., Ryabchikov, Yu., Al-Kattan, A., Sviridov, A.P., Sentis, M., Ivanov, A.V., Nikiforov, V.N., Kabashin, A.V., and Timo-shenko, V.Yu., Sci. Rep., 2014, vol. 4, p. 7034.

    Article  Google Scholar 

  5. Tolstik, E., Osminkina, L.A., Matthäus, C., Burkhardt, M., Tsurikov, K.E., Natashina, U.A., Timoshenko, V.Yu., Heintzmann, R., Popp, J., and Sivakov, V., Nanomedicine: Nanotechnology, Biology and Medicine, 2016, vol. 12, no. 7, p. 1931.

    Article  Google Scholar 

  6. Sokolovskaya, O.I., Zabotnov, S.V., Golovan, L.A., Kashkarov, P.K., Kurakina, D.A., Sergeeva, E.A., and Kirillin, M.Yu., Quantum Electron., 2021, vol. 51, no. 1, p. 64.

    Article  ADS  Google Scholar 

  7. Oleshchenko, V.A., Kharin, A.Yu., Alykova, A.F., Karpukhina, O.V., Karpov, N.V., Popov, A.A., Bezotosnyi, V.V., Klimentov, S.M., Zavestovskaya, I.N., Kabashin, A.V., and Timoshenko, V.Yu., Appl. Surf. Sci., 2020, vol. 516, p. 145661.

  8. Oleshchenko, V.A., Bezotosny, V.V., and Timoshenko, V.Yu., Quantum Electron., 2020, vol. 50, no. 2, p. 104.

    Article  ADS  Google Scholar 

  9. Sokolovskaya, O.I., Sergeeva, E.A., Golovan, L.A., Kashkarov, P.K., Khilov, A.V., Kurakina, D.A., Orlinskaya, N.Y., Zabotnov, S.V., and Kirillin, M.Y., Photonics, 2021, vol. 8, no. 12, p. 580.

    Article  Google Scholar 

  10. Balkanski, M., Wallis, R.F., and Haro, E., Phys. Rev. B, 1983, vol. 28, no. 4, p. 1928.

    Article  ADS  Google Scholar 

  11. Kip, B.J. and Meier, R., J. Appl. Spectrosc., 1990, vol. 44, no. 4, p. 707.

    Article  ADS  Google Scholar 

  12. Alykova, A.F., Zavestovskaya, I.N., Yakunin, V.G., and Timoshenko, V.Yu., J. Phys.: Conf. Ser., 2018, vol. 945, p. 012002.

  13. Kargina, Yu.V., Perepukhov, A.M., Kharin, A.Yu., Zvereva, E.A., Koshelev, A.V., Zinovyev, S.V., Maximychev, A.V., Alykova, A.F., Sharonova, N.V., Zubov, V.P., Gulyaev, M.V., Pirogov, Y.A., Vasiliev, A.N., Ischenko, A.A., and Timoshenko, V.Yu., Phys. Status Solidi A, 2019, vol. 216, p. 1800897.

  14. Rousseau, R.W. and Fair, J.R., Handbook of Separation Process Technology, Hoboken, NJ: Wiley, 1987.

    Google Scholar 

  15. Weakliem, H.A. and Redfield, D., J. Appl. Phys., 1979, vol. 50, no. 3, p. 1491.

    Article  ADS  Google Scholar 

  16. Jellison, G.E., Jr. and Modine, F.A., Appl. Phys. Lett., 1982, vol. 41, no. 2, p. 180.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to A.A. Ishchenko for providing samples of nanoparticles.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Pokryshkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Derbov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokryshkin, N.S., Kuchumov, I.D., Yakunin, V.G. et al. Monitoring the Temperature of Silicon Nanoparticles in Liquid using Raman Scattering Excited by Nanosecond Pulsed Laser Radiation. Bull. Lebedev Phys. Inst. 50 (Suppl 10), S1163–S1168 (2023). https://doi.org/10.3103/S1068335623220098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623220098

Keywords:

Navigation