Skip to main content
Log in

High-Brilliance Betatron Gamma-Ray Source

  • RADIATION GENERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The generation of synchrotron radiation in a near-critical density plasma in the regime of relativistic self-trapping of a propagating laser pulse is considered as applied to the XCELS [1] facility parameters. This propagation regime ensures the acceleration of electrons with an extremely large total charge (at a level of several tens of nanocoulombs) to gigaelectronvolt energies, which determines high brilliance of synchrotron radiation. On the basis of the calculation of retarded potentials, we study space–time and spectral–angular characteristics of secondary gamma-ray radiation. It is shown that XCELS laser pulses will make it possible to generate directed secondary radiation with a photon energy up to 10 MeV (and higher) and brilliance exceeding 1023 photons s–1 mm–2 mrad–2 (at Δλ/λ = 0.1%), which turns out to be greater than the brilliance of a bremsstrahlung gamma source for the same laser parameters. This opens up prospects for using a betatron source for phase-contrast microscopy of deeply shielded objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Khazanov, E. et al., High Power Laser Science and Engineering, 2023, pp. 1–77. https://doi.org/10.1017/hpl.2023.69

  2. Pukhov, A. and Meyer-ter-Vehn, J., Appl. Phys. B, 2002, vol. 74, p. 355.

    Article  ADS  Google Scholar 

  3. Pukhov, A., Sheng, Z.-M., and Meyer-ter-Vehn, J., Phys. Plasmas, 1999, vol. 6, p. 2847.

    Article  ADS  Google Scholar 

  4. Kneip, S., McGuffey, C., Martins, J.L., Martins, S.F., Bellei, C., Chvykov, V., Dollar, F., Fonseca, R., Huntington, C., Kalintchenko, G., Maksimchuk, A., Mangles, S.P.D., Matsuoka, T., Nagel, S.R., Palmer, C.A.J., Schreiber, J., Ta Phuoc, K., Thomas, A.G.R., Yanovsky, V., Silva, L.O., Krushelnick, K., and Najmudin, Z., Nat. Phys., 2010, vol. 6, p. 980.

    Article  Google Scholar 

  5. Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismaïl, A., Davoine, X., Gallot, G., Goddet, J.-P., Lefebvre, E., Malka, V., and Faure, J., Nat. Phys., 2011, vol. 7, p. 219.

    Article  Google Scholar 

  6. Ta Phuoc, K., Corde, S., Shah, R., Albert, F., Fitour, R., Rousseau, J.Ph., Burgy, F., Mercier, B., and Rousse, A., Phys. Rev. Lett., 2006, vol. 97, p. 225002.

    ADS  Google Scholar 

  7. Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., and Silva, L.O., Phys. Rev. ST Accel. Beams, 2007, vol. 10, p. 061301.

    Article  ADS  Google Scholar 

  8. Albert, F. and Thomas, A.G.R., Plasma Phys. Control. Fusion, 2016, vol. 58, p. 103001.

    Article  ADS  Google Scholar 

  9. Bloom, M.S., Streeter, M.J.V., Kneip, S., Bendoyro, R.A., Cheklov, O., Cole, J.M., Dopp, A., Hooker, C.J., Holloway, J., Jiang, J., Lopes, N.C., Nakamura, H., Norreys, P.A., Rajeev, P.P., Symes, D.R., Schreiber, J., Wood, J.C., Wing, M., Najmudin, Z., and Mangles, S.P.D., Phys. Rev. Accel. Beams, 2020, vol. 23, p. 061301.

    Article  ADS  Google Scholar 

  10. Fuchs, M., Weingartner, R., Popp, A., Major, Zs., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Hörlein, R., Tsakiris, G.D., Schramm, U., Rowlands-Rees, T.P., Hooker, S.M., Habs, D., Krausz, F., Karsch, S., and Grüner, F., Nat. Phys., 2009, vol. 5, p. 826.

    Article  Google Scholar 

  11. Huang, T.W., Robinson, A.P.L., Zhou, C.T., Qiao, B., Liu, B., Ruan, S.C., He, X.T., and Norreys, P.A., Phys. Rev. E, 2016, vol. 93, p. 063203.

    Article  ADS  Google Scholar 

  12. Kneip, S., Phys. Rev. Lett., 2008, vol. 100, p. 105006.

    Article  ADS  Google Scholar 

  13. Rosmej, O.N., Shen, X.F., Pukhov, A., Antonelli, L., Barbato, F., Gyrdymov, M., Güther, M.M., Zähter, S., Popov, V.S., Borisenko, N.G., and Andreev, N.E., Matter Radiat. Extremes, 2021, vol. 6, p. 048401.

    Google Scholar 

  14. Bychenkov, V.Yu., Lobok, M.G., Kovalev, V.F., and Brantov, A.V., Plasma Phys. Control. Fusion, 2019, vol. 61, p. 124004.

    Article  ADS  Google Scholar 

  15. Lobok, M.G., Brantov, A.V., Gozhev, D.A., and Bychenkov, V.Yu., Plasma Phys. Control. Fusion, 2018, vol. 60, p. 084010.

    Article  ADS  Google Scholar 

  16. Lobok, M.G., Andriyash, I.A., Vais, O.E., Malka, V., and Bychenkov, V.Yu., Phys. Rev. E, 2021, vol. 104, L053201.

    Article  ADS  Google Scholar 

  17. Bychenkov, V.Yu. and Lobok, M.G., JETP Lett., 2021, vol. 114, p. 579.

    Article  ADS  Google Scholar 

  18. Bychenkov, V.Yu. and Lobok, M.G., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 6, pp. S706–S714. https://doi.org/10.3103/S1068335623180045

  19. Nieter, C. and Cary, J.R., J. Comput. Phys., 2004, vol. 196, p. 448.

    Article  ADS  Google Scholar 

  20. Jackson, J., Classical Electrodynamics, Hoboken, NJ: Wiley, 1962.

    MATH  Google Scholar 

  21. Corde, S., Ta Phuoc, K., Lambert, G., Fitour, R., Malka, V., Rousse, A., Beck, A., and Lefebvre, E., Rev. Mod., 2013, vol. 85, p. 1.

    Article  ADS  Google Scholar 

  22. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7, pp. S815–S820. https://doi.org/10.3103/S1068335623190132

  23. Rosmej, O.N., Andreev, N.E., Zähter, S., Zahn, N., Christ, P., Borm, B., Radon, T., Sokolov, A., Pugachev, L.P., Khaghani, D., Horst, F., Borisenko, N.G., Sklizkov, G., and Pimenov, V.G., New J. Phys., 2019, vol. 21, p. 043044.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1361), the Russian Foundation for Basic Research and Rosatom (grant no. 2021-00023), and the BASIS Foundation for the Development of Theoretical Physics (grant no. 22-1-3-28-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Vais.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vais, O.E., Lobok, M.G. & Bychenkov, V.Y. High-Brilliance Betatron Gamma-Ray Source. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S806–S814 (2023). https://doi.org/10.3103/S1068335623190168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190168

Keywords:

Navigation