Skip to main content
Log in

Acceleration of Ions by the Force of Radiation Pressure during the Interaction of an Extremely Intense Pulse of Circularly Polarized Laser Radiation with a Solid Target

  • PARTICLE ACCELERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

In this paper, we consider the possibility of effective acceleration of ions driven by the radiation pressure force of an extremely intense pulse of a circularly polarized laser radiation. Using full-size 3D particle-in-cell imulation, target parameters such as thickness, density, and a degree of laser radiation focusing have been determined. These parameters are optimal from the point of view of the efficiency of conversion of radiation energy into ion energy, maximum energy and ion charge. It is shown that, with the laser radiation parameters expected at the XCELS facility, it is possible to obtain an ion beam with an energy of up to 1.7 GeV/nucleon with conversion efficiency reaching 40% and charge of ions of more than 50 nC , and an energy exceeding 500 MeV/nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Macchi, A., Borghesi, M., and Passoni, M., Rev. Mod. Phys., 2013, vol. 85, no. 2, p. 751. https://doi.org/10.1103/RevModPhys.85.751

    Article  ADS  Google Scholar 

  2. Steinke, S. et al., Phys. Rev. Accel. Beams, 2013, vol. 16, no. 1, p. 011303. https://doi.org/10.1103/PhysRevSTAB.16.011303

    Article  ADS  Google Scholar 

  3. Ma, W.J. et al., Phys. Rev. Lett., 2019, vol. 122, no. 1, p. 014803. https://doi.org/10.1103/PhysRevLett.122.014803

    Article  ADS  Google Scholar 

  4. Pae Ki Hong et al., Plasma Phys. Control. Fusion, 2020, vol. 62, no. 5, p. 055009. https://doi.org/10.1088/1361-6587/ab7d27

    Article  ADS  Google Scholar 

  5. Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G., and Tajima, T., Phys. Rev. Lett., 2004, vol. 92, no. 17, p. 175003. https://doi.org/10.1103/PhysRevLett.92.175003

    Article  ADS  Google Scholar 

  6. Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G., and Bellei, C., Plasma Phys. Control. Fusion, 2009, vol. 51, no. 2, p. 024004. https://doi.org/10.1088/0741-3335/51/2/024004

    Article  ADS  Google Scholar 

  7. Weng, S.M., Murakami, M., Mulser, P., and Sheng, Z.M., New J. Phys., 2012, vol. 14, no. 6, p. 063026. https://doi.org/10.1088/1367-2630/14/6/063026

    Article  ADS  Google Scholar 

  8. Khazanov, E., Shaykin, A., Kostyukov, I., Ginzburg, V., Mukhin, I., Yakovlev, I., Soloviev, A., Kuznetsov, I., Mironov, S., Korzhimanov, A., Bulanov, D., Shaikin, I., Kochetkov, A., Kuzmin, A., Martyanov, M., Lozhkarev, V., Starodubtsev, M., Litvak, A., and Sergeev, A., (2023). Exawatt Center for Extreme Light Studies (XCELS). High Power Laser Science and Engineering, 1–77. https://doi.org/10.1017/hpl.2023.69

  9. Birdsall, C.K. and Langdon, A.B., Plasma Physics via Computer Simulation, Boca Raton, Fla.: CRC Press, 2004. https://doi.org/10.1201/9781315275048

    Book  Google Scholar 

  10. QUILL Code. https://github.com/QUILL-PIC/Quill.

  11. Pukhov, A., CERN Yellow Rep., 2016, vol. 1, p. 181. https://doi.org/10.5170/CERN-2016-001.181

    Article  Google Scholar 

  12. Vay, J.L., Phys. Plasmas, 2008, vol. 15, no. 5, p. 056701. https://doi.org/10.1063/1.2837054

    Article  ADS  Google Scholar 

  13. Elkina, N.V., Fedotov, A.M., Kostyukov, I.Y., Legkov, M.V., Narozhny, N.B., Nerush, E.N., and Ruhl, H., Phys. Rev. Accel. Beams, 2011, vol. 14, no. 5, p. 054401. https://doi.org/10.1103/PhysRevSTAB.14.054401

    Article  ADS  Google Scholar 

  14. Nerush, E.N. and Kostyukov, I.Y., Plasma Phys. Control. Fusion, 2015, vol. 57, no. 3, p. 035007. https://doi.org/10.1088/0741-3335/57/3/035007

    Article  ADS  Google Scholar 

  15. Gelfer, E.G., Fedotov, A.M., and Weber, S., New J. Phys., 2021, vol. 23, no. 9, p. 095002. https://doi.org/10.1088/1367-2630/ac1a97

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Samsonov or I. Yu. Kostyukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, A.S., Kostyukov, I.Y. Acceleration of Ions by the Force of Radiation Pressure during the Interaction of an Extremely Intense Pulse of Circularly Polarized Laser Radiation with a Solid Target. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S749–S754 (2023). https://doi.org/10.3103/S1068335623190144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190144

Keywords:

Navigation