Skip to main content
Log in

Efficient Bremsstrahlung Positron Source Based on Wakefield-Accelerated Electrons

  • PARTICLE ACCELERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A growing interest in obtaining high-current beams of electron–positron pairs using lasers motivates the use of ever more high-power laser systems and the forecasting of the possibilities of future projects in this regard, such as the XCELS facility, which can provide a breakthrough in creating a record high-power positron source using laser-accelerated electron beams. For the substantiation of the latter, use is made of the end-to-end numerical simulation of the electron bunch acceleration by a high-power XCELS radiation pulse and the positron beam generation in a converter target using the particle-in-cell (PIC) and Monte Carlo (GEANT4) methods. The high efficiency of obtaining a record number of positrons is due to the use of the regime of relativistic self-trapping of a laser pulse for the wakefield acceleration of electrons, which leads to the achievement of a maximum charge of electrons with an energy of multi-MeV and to a maximum conversion coefficient of laser energy in near-critical density targets. A possibility of a record-high yield of positrons with an energy per shot at a MeV level in their classical (i.e., bremsstrahlung) generation scheme is demonstrated in comparison with the yield achieved today for modern lasers or predicted for existing future laser projects. Thus, the case in point is the possibility of using the XCELS facility to generate a maximum number of generated positrons, ~1012, which is many orders of magnitude higher than the positron yield achieved in the projects under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grafutin, V.I. and Prokop’ev, E.P., Phys.-Usp., 2002, vol. 45, p. 59.

    Article  ADS  Google Scholar 

  2. Wardle, J.F.C., Homan, D.C., Ojha, R., and Roberts, D.H., Nature (London), 1998, vol. 395, p. 457.

    Article  ADS  Google Scholar 

  3. Liang, E., Clarke, T., Henderson, A., Fu, W., Lo, W., Taylor, D., Chaguine, P., Zhou, S., Hua, Y., Cen, X., Wang, X., Kao, J., Hasson, H., Dyer, G., Serratto, K., Riley, N., Donovan, M., and Ditmire, T., Sci. Rep., 2015, vol. 5, p. 13968.

    Article  ADS  Google Scholar 

  4. Sarri, G., Calvin, L., and Streeter, M., Plasma Phys. Control. Fusion, 2022, vol. 64, p. 044001.

    Article  ADS  Google Scholar 

  5. Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W., and Kuhl, T., Laser Part. Beams, 1999, vol. 17, p. 773.

    Article  ADS  Google Scholar 

  6. Tajima, T. and Dawson, J.M., Phys. Rev. Lett., 1979, vol. 43, p. 267.

    Article  ADS  Google Scholar 

  7. Gahn, C., Tsakiris, G.D., Pretzler, G., Witte, K.J., Delfin, C., Wahlstrom, C.-G., and Habs, D., Appl. Phys. Lett., 2000, vol. 77, p. 2662.

    Article  ADS  Google Scholar 

  8. Bychenkov, V.Yu., Lobok, M.G., Kovalev, V.F., and Brantov, A.V., Plasma Phys. Control. Fusion, 2019, vol. 61, p. 124004.

    Article  ADS  Google Scholar 

  9. Pukhov, A. and Meyer-ter-Vehn, J., Appl. Phys. B, 2002, vol. 74, p. 355.

    Article  ADS  Google Scholar 

  10. Pukhov, A., Gordienko, S., Kiselev, S., and Kostyukov, I., Plasma Phys. Control. Fusion, 2004, vol. 46, p. B179.

    Article  Google Scholar 

  11. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Phys. Plasmas, 2020, vol. 27, p. 123103.

    Article  ADS  Google Scholar 

  12. Bychenkov, V.Yu. and Lobok, M.G., JETP Lett., 2021, vol. 114, p. 571.

    Article  ADS  Google Scholar 

  13. Chen, H., Wilks, S.C., Bonlie, J.D., Liang, E.P., Myatt, J., Price, D.F., Meyerhofer, D.D., and Beiersdorfer, P., Phys. Rev. Lett., 2009, vol. 102, p. 105001.

    Article  ADS  Google Scholar 

  14. Chen, H., Wilks, S.C., Bonlie, J.D., Chen, C.N., Cone, K.V., Elberson, L.N., Gregori, G., Meyerhofer, D.D., Myatt, J., Price, D.F., Schneider, M.B., Shepherd, R., Stafford, D.C., Tommasini, R., Van Maren, R., and Beiersdorfer, P., Phys. Plasmas, 2009, vol. 16, p. 122702.

    Article  ADS  Google Scholar 

  15. Chen, H., Wilks, S.C., Meyerhofer, D.D., Bonlie, J.D., Chen, C.D., Chen, C.N., Courtois, C., Elberson, L.N., Gregori, G., Kruer, W., Landoas, O., Mithen, J., Myatt, J., Murphy, C.D., Nilson, P., Price, D.F., Schneider, M.B., Shepherd, R., Stoeckl, C., Tabak, M., Tommasini, R., and Beiersdorfer, P., Phys. Rev. Lett., 2010, vol. 105, p. 015003.

    Article  ADS  Google Scholar 

  16. Sarri, G., Schumaker, W., Di Piazza, A., Vargas, M., Dromey, B., Dieckmann, M.E., Chvykov, V., Maksimchuk, A., Yanovsky, V., He, Z.H., Hou, B.X., Nees, J.A., Thomas, A.G.R., Keitel, C.H., Zepf, M., and Krushelnick, K., Phys. Rev. Lett., 2013, vol. 110, p. 255002.

    Article  ADS  Google Scholar 

  17. Chen, H., Fiuza, F., Link, A., Hazi, A., Hill, M., Hoarty, V., James, S., Kerr, S., Meyerhofer, D.D., Myatt, J., Park, J., Sentoku, Y., and Williams, G.J., Phys. Rev. Lett., 2015, vol. 114, p. 215001.

    Article  ADS  Google Scholar 

  18. Williams, G.J., Pollock, B.B., Albert, F., Park, J., and Chen, H., Phys. Plasmas, 2015, vol. 22, p. 093115.

    Article  ADS  Google Scholar 

  19. Sarri, G., Poder, K., Cole, J.M., Schumaker, W., Di Piazza, A., Reville, B., Dzelzainis, T., Doria, D., Gizzi, L.A., Grittani, G., Kar, S., Keitel, C.H., Krushelnick, K., Kuschel, S., Mangles, S.P.D., Najmudin, Z., Shukla, N., Silva, L.O., Symes, D., Thomas, A.G.R., Vargas, M., Vieira, J., and Zepf, M., Nat. Commun., 2015, vol. 6, p. 6747.

    Article  ADS  Google Scholar 

  20. Decker, C.D., Mori, W.B., Tzeng, K.C., and Katsouleas, T., Phys. Plasmas, 1996, vol. 3, p. 2047.

    Article  ADS  Google Scholar 

  21. Lobok, M.G., Brantov, A.V., Gozhev, D.A., and Bychenkov, V.Yu., Plasma Phys. Control. Fusion, 2018, vol. 60, p. 084010.

    Article  ADS  Google Scholar 

  22. Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., and Silva, L.O., Phys. Rev. ST Accel. Beams, 2007, vol. 10, p. 061301.

    Article  ADS  Google Scholar 

  23. Kovalev, V.F. and Bychenkov, V.Yu., Radiophys. Quantum Electron., 2021, vol. 63, p. 742.

    Article  ADS  Google Scholar 

  24. Bychenkov, V.Yu. and Lobok, M.G., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 6, pp. S706–S714. https://doi.org/10.3103/S1068335623180045

  25. Lobok M.G., Brantov A.V., and Bychenkov V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7, pp. S815–S820. https://doi.org/10.3103/S1068335623190132

  26. Vais, O.E., Lobok, M.G., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7, pp. S806–S814. https://doi.org/10.3103/S1068335623190168

  27. Eidelman, S., et al., Phys. Lett. B, 2004, vol. 592, p. 1.

    Article  ADS  Google Scholar 

  28. Chen, H., Link, A.J., van Maren, R., Patel, P.K., Shepherd, R., Wilks, S.C., and Beiersdorfer, P., Rev. Sci. Instrum., 2008, vol. 79, p. 10E533.

  29. Sarri, G., Calvin, L., and Streeter, M., Plasma Phys. Control. Fusion, 2022, vol. 64, p. 044001.

    Article  ADS  Google Scholar 

  30. Khazanov, E.A., Shaikin, A.A., Kostyukov, I.Yu., Ginzburg, V.N., Mukhin, I.B., Yakovlev, I.V., Solov’ev, A.A., Kuznetsov, I.I., Mironov, S.Yu., Korzhimanov, A.V., Bulanov, D.N., Shaikin, I.A., Kochetkov, A.A., Kuzmin, A.A., Martyanov, M.A., Lozhkarev, V.V., Starodubtsev, M.V., Litvak, A.G., and Sergeev, A.M., Kvantovaya Elektron., 2023, vol. 53, no. 2, p. 95.

    Google Scholar 

Download references

Funding

The work was supported by the scientific program of the National Center for Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Lobok or V. Yu. Bychenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobok, M.G., Bychenkov, V.Y. Efficient Bremsstrahlung Positron Source Based on Wakefield-Accelerated Electrons. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S782–S789 (2023). https://doi.org/10.3103/S1068335623190120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190120

Keywords:

Navigation