Skip to main content
Log in

Concentration and Propagation of Superstrong Laser-Induced THz Fields on a Microwire Target

  • RADIATION GENERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The effect of a high-power short laser pulse from the Exawatt Center for Extreme Light Studies (XCELS) facility on solid-state metal targets with different constructions and sizes can yield high-power THz pulses with an unprecedentedly high energy. Their further application requires focusing and transport, which calls for the development of corresponding control units. In this context, it is of interest to use targets, which, on the one hand, are elements of the radiation source and, on the other hand, can collimate and transfer the THz radiation energy. A target in the form of a thin wire appears promising for this purpose. The process of THz pulse generation upon interaction between XCELS laser pulses and a metal cylindrical target (microwire) has been numerically simulated. It is shown that THz radiation is generated in a unique form (as a unipolar pulse) and the microwire target allows to concentrate a significant part of the radiation near its surface and transfer it (in the form of a unipolar surface pulse as well) with the speed of light along the wire to large distances with weak damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chen, Z., Ma, X., Zhang, B., Zhang, Y., Niu, Z., Kuang, N., Chen, W., Li, L., and Li, S., China Commun., 2019, vol. 16, no. 2, p. 1.

    Article  ADS  Google Scholar 

  2. TeraSense. Terahertz Security Body Scanner. https://terasense.com/products/body-scanner/.

  3. Vicario, C., Ovchinnikov, A.V., Ashitkov, S.I., Agranat, M.B., Fortov, V.E., and Hauri, C.P., Opt. Lett., 2014, vol. 39, p. 6632.

    Article  ADS  Google Scholar 

  4. Fülöp, A., Ollmann, Z., Lombosi, Cs., Skrobo, C., Klingebie, S., Pálfalvi, L., Krausz, F., Karsch, S., and Hebling, J., Opt. Express, 2014, vol. 22, p. 20155.

    Article  ADS  Google Scholar 

  5. Kulipanov, G.N., Gavrilov, N.G., Knyazev, B.A., Kolobanov, E.I., Kotenkov, V.V., Kubarev, V.V., Matveenko, A.N., Medvedev, L.E., Miginsky, S.V., Mironenko, L.A., Ovchar, V.K., Popik, V.M., Salikova, T.V., Scheglov, M.A., Serednyakov, S.S., Shevchenko, O.A., Skrinsky, A.N., Tcheskidov, V.G., and Vinokurov, N.A., Terahertz Sci. Technol., 2008, vol. 1, p. 107

    Google Scholar 

  6. Wu, Z., Fisher, A.S., Goodfellow, J., Fuchs, M., Daranciang, D., Hogan, M., and Loos, H., Rev. Sci. Instrum., 2013, vol. 84, p. 022701.

    Article  ADS  Google Scholar 

  7. Kim, K., Taylor, A., Glownia, J., and Rodriguez, G., Nat. Photonics, 2008, vol. 2, p. 605.

    Article  Google Scholar 

  8. Dey, I., Jana, K., Fedorov, V., Koulouklidis, A., Mondal, A., Shaikh, M., Sarkar, D., Lad, A., Tzortzakis, S., Couairon, A., and Kumar, G., Nat. Commun., 2017, vol. 8, p. 1184.

    Article  ADS  Google Scholar 

  9. Liao, G.-Q., Liu, H., Scott, G.G., Zhang, Y.-H., Zhu, B.-J., Zhang, Z., Li, Y.-T., Armstrong, C., Zemaityte, E., Bradford, P., Rusby, D.R., Neely, D., Huggard, P.G., McKenna, P., Brenner, C.M., Woolsey, N.C., Wang, W.-M., Sheng, Z.-M., and Zhang, J., Phys. Rev. X, 2020, vol. 10, p. 031062.

    Google Scholar 

  10. Tokita, S., Sakabe, S., Nagashima, T., Hashida, M., and Inoue, S., Sci. Rep., 2015, vol. 5, p. 8268.

    Article  ADS  Google Scholar 

  11. Teramoto, K., Tokita, S., Terao, T., Inoue, S., Yasuhara, R., Nagashima, T., Kojima, S., Kawanaka, J., Mori, K., Hashida, M., and Sakabe, S., Appl. Phys. Lett., 2018, vol. 113, p. 051101.

    Article  ADS  Google Scholar 

  12. Zeng, Y., Zhou, C., Song, L., Lu, X., Li, Z., Ding, Y., Bai, Y., Xu, Y., Leng, Y., Tian, Y., Liu, J., Li, R., and Xu, Z., Opt. Express, 2020, vol. 28, no. 10, p. 15258.

    Article  ADS  Google Scholar 

  13. Borghesi, M., Toncian, T., Fuchs, J., Cecchetti, C.A., Romagnani, L., Kar, S., Quinn, K., Ramakrishna, B., Wilson, P.A., Antici, P., Audebert, P., Brambrink, E., Pipahl, A., Jung, R., Amin, M., Willi, O., Clarke, R.J., Notley, M., Mora, P., Grismayer, T., D’Humieres, E., and Sentoku, Y., Eur. Phys. J. Special Topics, 2009, vol. 175, p. 105.

    Article  ADS  Google Scholar 

  14. Ahmed, H., Kar, S., Cantono, G., Nersisyan, G., Brauckmann, S., Doria, D., Gwynne, D., Macchi, A., Naughton, K., Willi, O., Lewis, C.L.S., and Borghesi, M., Nucl. Instrum. Methods A, 2016, vol. 829, p. 172.

    Article  ADS  Google Scholar 

  15. Quinn, K., Wilson, P.A., Cecchetti, C.A., Ramakrishna, B., Romagnani, L., Sarri, G., Lancia, L., Fuchs, J., Pipahl, A., Toncian, T., Willi, O., Clarke, R.J., Neely, D., Notley, M., Gallegos, P., Carroll, D.C., Quinn, M.N., Yuan, X.H., McKenna, P., Liseykina, T.V., Macchi, A., and Borghesi, M., Phys. Rev. Lett., 2009, vol. 102, p. 194801.

    Article  ADS  Google Scholar 

  16. Brantov, A.V., Kuratov, A.S., Aliev, Yu.M., and Bychenkov, V.Yu., Phys. Rev. E, 2020, vol. 102, p. 021202.

    Article  ADS  Google Scholar 

  17. Brantov, A.V., Kuratov, A.S., and Bychenkov, V.Yu., Plasma Phys. Control. Fusion, 2020, vol. 62, p. 094003.

    Article  ADS  Google Scholar 

  18. Li, Z. and Zheng, J., Phys. Plasmas, 2007, vol. 14, p. 054505.

    Article  ADS  Google Scholar 

  19. Kar, S., Ahmed, H., Prasad, R., Cerchez, M., Brauckmann, S., Aurand, B., Cantono, G., Hadjisolomou, P., Lewis, C., Macchi, A., Nersisyan, G., Robinson, A., Schroer, A., Swantusch, M., Zepf, M., Willi, O., and Borghesi, M., Nat. Commun., 2016, vol. 7, p. 10792.

    Article  ADS  Google Scholar 

  20. Ahmed, H., Kar, S., Giesecke, A. L., Doria, D., Nersisyan, G., Willi, O., Lewis, C.L.S., and Borghesi, M., High Power Laser Sci. Eng., 2017, vol. 5, p. e4.

    Article  Google Scholar 

  21. Maksimchuk, A., Belancourt, P., Manuel, M., Willingale, L., Thomas, A., Drake, R., Krushelnick, K., Brantov, A., and Bychenkov, V., The DPP-13 Meeting APS, BAPS.2013.DPP.PO6.5, 2015. https://meetings.aps.org/link/BAPS.2013.DPP.PO6.5.

  22. Nakajima, H., Tokita, S., Inoue, S., Hashida, M., and Sakabe, S., Phys. Rev. Lett., 2013, vol. 110, p. 155001.

    Article  ADS  Google Scholar 

  23. Nakajima, K., Light: Sci. Appl., 2017, vol. 6, p. e17063.

    Article  ADS  Google Scholar 

  24. Kuratov, A.S., Brantov, A.V., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2018, vol. 45, no. 11, p. 346.

    Article  ADS  Google Scholar 

  25. Zhuo, H.B., Zhang, S.J., Li, X.H., Zhou, H.Y., Li, X.Z., Zou, D.B., Yu, M.Y., Wu, H.C., Sheng, Z.M., and Zhou, C.T., Phys. Rev. E, 2017, vol. 95, p. 013201.

    Article  ADS  Google Scholar 

  26. Astley, V., Mendis, R., and Mittleman, D., Appl. Phys. Lett., 2009, vol. 95, p. 031104.

    Article  ADS  Google Scholar 

  27. He, X., J. Opt. Soc. Am. B, 2009, vol. 26, no. 9, p. A23

    Article  Google Scholar 

  28. Liang, H., Ruan, S., and Zhang, M., Opt. Express, 2008, vol. 16, p. 18241.

    Article  ADS  Google Scholar 

  29. Bustamante, C.J., Chemla, Y.R., Liu, S., and Wang, M.D., Nat. Rev. Meth. Primers, 2021, vol. 1, p. 25.

    Article  Google Scholar 

  30. Maksimchuk, A.M., Personal communication, 2016.

  31. Kuratov, A.S., Brantov, A.V., Kovalev, V.F., and Bychenkov, V.Yu., Phys. Rev. E, 2022, vol. 106, p. 035201.

    Article  ADS  Google Scholar 

  32. Ginzburg, V.L. and Tsytovich, V.N., Perekhodnoe izluchenie i perekhodnoe rasseyanie (nekotorye voprosy teorii) (Transition Radiation and Transition Scattering (Some Questions of Theory)), Moscow: Nauka, 1984.

  33. Landau, L.D. and Lifshitz, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

Download references

Funding

This study was supported by the Complex Program of Development of Atomic Science, Engineering, and Technologies up to 2024 (project of the Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences no. 075-03-2022-047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Kuratov, A. V. Brantov or V. Yu. Bychenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuratov, A.S., Brantov, A.V. & Bychenkov, V.Y. Concentration and Propagation of Superstrong Laser-Induced THz Fields on a Microwire Target. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S854–S862 (2023). https://doi.org/10.3103/S1068335623190107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190107

Keywords:

Navigation