Skip to main content
Log in

Pulsed Source of Charged Particles and Neutrons Based on a 10-Petawatt Laser System Irradiating a Microcluster Medium

  • PARTICLE ACCELERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The high energy of the XCELS laser allows for obtaining a large number of laser-heated/accelerated particles and products of nuclear reactions initiated by them in a large-volume transparent microstructured medium. As an example, the mode of laser–plasma interaction was studied at a moderately relativistic heating pulse intensity of ~1018 W/cm2 in a sufficiently large volume of a microcluster medium, which does not require sharp focusing of a powerful laser beam(s), simplifying the experiment. It has already been shown earlier that, for a laser pulse with an energy of ~1 J, under certain conditions for the geometric and compositional parameters of a deuterium-containing cluster target, it is possible to maximize the yield of hot superponderomotive electrons and explosively accelerated deuterons. In this study, this approach was extended to a femtosecond laser driver with an energy hundreds of times greater (300–400 J). Recommendations were developed for obtaining a record number of laser-heated deuterons of moderate energies (0.2–2 MeV) in a large volume of a cluster medium (heavy water spray) at the level of 1015 particles per shot and for creating a superbright source of thermonuclear DD neutrons with an expected peak flux of ~1018 neutrons cm–2 s–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Curtis, A., Calvi, C., Tinsley, J., Hollinger, R., Kaymak, V., Pukhov, A., Wang, S., Rockwood, A., Wang, Y., Shlyaptsev, V.N., and Rocca, J.J., Nat. Commun., 2018, vol. 9, p. 1077.

    Article  ADS  Google Scholar 

  2. Purvis, M.A., Shlyaptsev, V.N., Hollinger, R., Bargsten, C., Pukhov, A., Prieto, A., Wang, Y., Luther, B.M., Yin, L., Wang, S., and Rocca, J.J., Nat. Photonics, 2013, vol. 7, p. 796.

    Article  ADS  Google Scholar 

  3. Gozhev, D.A., Bochkarev, S.G., Busleev, N.I., Brantov, A.V., Kudryashov, S.I., Savel’ev, A.B., and Bychenkov, V.Yu., High Energy Density Phys., 2020, vol. 37, p. 100856.

    Article  Google Scholar 

  4. Zou, D., Yu, M., Jiang, X., Zhao, N., Yu, T., Zhuo, H., Pukhov, A., Ma, Y., Shao, F., Zhou, C., and Ruan, S., Adv. Photon. Res., 2021, vol. 2, no. 7, p. 2000181.

    Article  Google Scholar 

  5. Jiang, S., Ji, L.L., Audesirk, H., Zhao, N., Yu, T., Zhuo, H., Pukhov, A., Ma, Y., Shao, F., Zhou, C., and Ruan, S., Phys. Rev. Lett., 2016, vol. 116, p. 085002.

    Article  ADS  Google Scholar 

  6. Gozhev, D.A., Bochkarev, S.G., and Bychenkov, V.Yu., JETP Lett., 2021, vol. 114, p. 200.

    Article  ADS  Google Scholar 

  7. Bochkarev, S.G., Brantov, A.B., Gozhev, D.A., and Bychenkov, V.Yu., J. Rus. Laser Res., 2021, vol. 42, p. 292.

    Article  Google Scholar 

  8. Klimo, O., Psikal, J., Limpouch, J., Proska, J., Novotny, F., Ceccotti, T., Floquet, V., and Kawata, S., New J. Phys., 2011, vol. 13, p. 053028

    Article  ADS  Google Scholar 

  9. Faenov, A.Ya., Pikuz, T.A., Fukuda, Y., Fortov, V.E., Boldarev, A.S., Gasilov, V.A., Chen, L.M., Zhang, L., Yan, W.C., Yuan, D.W., Mao, J.Y., Wang, Z.H., Colgan, J., and Abdallah, J., Jr., Contrib. Plasma Phys., 2013, vol. 53, p. 148.

    Article  ADS  Google Scholar 

  10. Krainov, V.P. and Smirnov, M.B., Phys Rep., 2002, vol. 370, p. 237.

    Article  ADS  Google Scholar 

  11. Bychenkov, V.Yu. and Kovalev V.F., Plasma Phys. Rep., 2005, vol. 31, p. 178.

    Article  ADS  Google Scholar 

  12. Gozhev, D.A., Bochkarev, S.G., Brantov, A.V., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2022, vol. 49, no. 2, p. 42.

    Article  ADS  Google Scholar 

  13. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Phys. Plasmas, 2019, vol. 26, p. 123107.

    Article  ADS  Google Scholar 

  14. Gunther, M.M., Rosmej, O.N., Tavana, P., Gyrdymov, M., Skobliakov, A., Kantsyrev, A., Zähter, S., Borisenko, N.G., Pukhov, A., and Andreev, N.E., Nat. Commun., 2022, vol. 13, p. 170.

    Article  ADS  Google Scholar 

  15. Romanov, D.V., Bychenkov, V.Yu., Rozmus, W., Capjack, C.E., Fedosejevs, R., Phys. Rev. Lett., 2004, vol. 93, p. 215004.

    Article  ADS  Google Scholar 

  16. Decker, C.D., Mori, W.B., Tzeng, K.C., and Katsouleas, T., Phys. Plasmas, 1996, vol. 3, p. 2047.

    Article  ADS  Google Scholar 

  17. Mora, P., Phys. Rev. Lett., 2003, vol. 90, p. 185002.

    Article  ADS  Google Scholar 

  18. Allison, J., Amakoca, K., Apostolakis, J., Araujo, H., Dubois, P.A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., Cirrone, G.A.P., and Cooperman, G., IEEE Trans. Nucl. Sci., 2006, vol. 53, p. 270.

    Article  ADS  Google Scholar 

  19. Karsch, S., Dissertation, Munchen: LMU, Faculty of Physics, 2002. https://doi.org/10.5282/edoc.703

  20. Mirfayzi, S.R., Yogo, A., Lan, Z., Ishimoto, T., Iwamoto, A., Nagata, M., Nakai, M., Arikawa, Y., Abe, Y., Golovin, D., Honoki, Y., Mori, T., Okamoto, K., Shokita, S., Neely, D., Fujioka, S., Mima, K., Nishimura, H., Kar, S., and Kodama, R., Sci. Rep., 2020, vol. 10, p. 20157.

    Article  Google Scholar 

  21. Ivanov, K.A., Shulyapov, S.A., Tsymbalov, I.N., Akunets, A.A., Borisenko, N.G., Mordvintsev, I.M., Bozhev, I.V., Volkov, R.V., Bochkarev, S.G., Bychenkov, V.Yu., and Savel’ev, A.B., Quantum Electron., 2020, vol. 50, p. 169.

    Article  ADS  Google Scholar 

  22. Rubovič, P., Bonasera, A., Burian, P., Cao, Z., Fu, C., Kong, D., Lan, H., Lou, Y., Luo, W., Lv, C., Ma, Y., Ma, W., Ma, Z., Meduna, L., Mei, Z., Mora, Y., Pan, Z., Shou, Y., Sýkora, R., Veselský, M., Wang, P., Wang, W., Yan, X., Zhang, G., Zhao, J., Zhao, Y., and Žemlicka, J., Nucl. Instrum. Methods Phys. Res. A, 2021, vol. 985, p. 164680.

    Article  Google Scholar 

  23. Shulyapov, S.A., Mordvintsev, I.M., Ivanov, K.A., Volkov, R.V., Zarubin, P.I., Ambrozova, I., Turek, K., and Savel’ev, A.B., Quantum Electron., 2016, vol. 46, p. 432.

    Article  ADS  Google Scholar 

  24. Paudel, Y., Frenje, J., Merwin, A., and Galloudec, N.R.L., J. Instrum., 2011, vol. 6, p. T08004.

    Article  Google Scholar 

  25. Kuz’mina, M.S. and Khazanov, E.A., Quantum Electron., 2015, vol. 45, p. 426.

    Article  ADS  Google Scholar 

  26. Neely, D., Faster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., Wahlström, C.-G., and McKenna, P., Appl. Phys. Lett., 2006, vol. 89, p. 021502.

    Article  ADS  Google Scholar 

  27. Ter-Avetisyan, S., Ramakrishna, B., Prasad, R., Borghesi, M., Nickles, P.V., Steinke, S., Schnürer, M., Popov, K.I., Ramunno, L., Zmitrenko, N.V., and Bychenkov, V.Yu., Phys. Plasmas, 2012, vol. 19, p. 073112.

    Article  ADS  Google Scholar 

  28. Semenov, T.A., Gorlova, D.A., Dzhidzhoev, M.S., Ivanov, K.A., Lazarev, A.V., Mareev, E.I., Minaev, N.V., Trubnikov, D.N., Tsymbalov, I.N., Volkov, R.V., Savel’ev, A.B., and Gordienko, V.M., Laser Phys. Lett., 2022, vol. 19, p. 095401.

    Article  ADS  Google Scholar 

  29. Jinno, S., Kanasaki, M., Uno, M., Matsui, R., Uesaka, M., Kishimoto, Y., and Fukuda, Y., Plasma Phys. Control. Fusion, 2018, vol. 60, p. 044021.

    Article  ADS  Google Scholar 

  30. Yogo, A., Mirfayzi, S.R., Arikawa, Y., Abe, Y., Wei, T., Mori, T., Lan, Z., Hoonoki, Y., Golovin, D.O., Koga, K., Suzuki, Y., Kanasaki, M., Fujioka, S., Nakai, M., Hayakawa, T., Mima, K., Nishimura, H., Kar, S., and Kodama, R., Appl. Phys. Express, 2021, vol. 14, p. 106001.

    Article  ADS  Google Scholar 

  31. Bychenkov, V.Yu., Tikhonchuk, V.T., and Tolokonnikov, S.V., J. Exp. Theor. Phys., 1999, vol. 88, p. 1137.

    Article  ADS  Google Scholar 

  32. Nedorezov, V.G., Rykovanov, S.G., and Savel’ev, A.B., Phys. Usp., 2021, vol. 64, p. 1214.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (S.G. Bochkarev) is grateful to I.Yu. Kostyukov (Gaponov-Grekhov Institute of Applied Physics) and A.V. Oginov (Lebedev Physical Institute) for discussion of the results of this work.

Funding

This work was supported by the Russian Foundation for Basic Research and Rosatom State Corporation (project no. 20-21-00023) and the Russian Ministry of Science and Higher Education (agreement no. 075-15-2021-1361 of 07.10.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Bochkarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozhev, D.A., Bochkarev, S.G., Lobok, M.G. et al. Pulsed Source of Charged Particles and Neutrons Based on a 10-Petawatt Laser System Irradiating a Microcluster Medium. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S772–S781 (2023). https://doi.org/10.3103/S1068335623190077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190077

Keywords:

Navigation