Skip to main content
Log in

Generation of THz Radiation with Extreme Parameters Using a Multipetawatt Laser Beam

  • RADIATION GENERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The interaction between a laser pulse with a peak power of 15 PW and a solid film target in the reflection and transmission regimes has been numerically studied. Frequency–angular radiation spectra in the THz range have been obtained and the parameters of accelerated electrons have been determined for these cases. The dimensionless strength of the THz field amounts to several units of a0, which may allow one to achieve relativistic intensities in the THz range after focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Liao, G.Q. and Li, Y.T., IEEE Trans. Plasma Sci., 2019, vol. 47, no. 6, p. 3002.

    Article  ADS  Google Scholar 

  2. Sun, W. et al., Opto-Electron. Sci., 2022, vol. 1, no. 8, p. 220003.

    Google Scholar 

  3. Roeder, F. et al., Opt. Express, 2020, vol. 28, no. 24, p. 36274.

    Article  ADS  Google Scholar 

  4. Kim, K.Y., Taylor, A.J., Glownia, J.H., and Rodriguez, G., Nat. Photonics, 2008, vol. 2, no. 10, p. 605.

    Article  Google Scholar 

  5. Oh, T.I. et al., Appl. Phys. Lett., 2013, vol. 102, no. 20, p. 201113.

    Article  ADS  Google Scholar 

  6. Lei, H.Y. et al., iScience, 2022, vol. 25, no. 5, p. 104336.

  7. Geng, Y. et al., Phys. Plasmas, 2020, vol. 27, no. 11, p. 113104.

    Article  ADS  Google Scholar 

  8. Ginzburg, V.L. and Frank, I.M., Sov. Phys. JETP, 1946, vol. 16, p. 15.

    Google Scholar 

  9. Timofeev, I.V., Annenkov, V.V., and Volchok, E.P., Phys. Plasmas, 2017, vol. 24, no. 10, p. 103106.

    Article  ADS  Google Scholar 

  10. Wang, X. et al., Nat. Commun., 2013, vol. 4, no. 1, p. 1988.

    Article  ADS  Google Scholar 

  11. Ma, Y.Y. et al., Proc. Natl. Acad. Sci. USA, 2018, vol. 115, no. 27, p. 6980.

    Article  ADS  Google Scholar 

  12. Tsymbalov, I. et al., Plasma Phys. Control. Fusion, 2019, vol. 61, no. 7, p. 075016.

    Article  ADS  Google Scholar 

  13. Tsymbalov, I. et al., Plasma Phys. Control. Fusion, 2021, vol. 63, no. 2, p. 022001.

    Article  ADS  Google Scholar 

  14. Gorlova, D., Tsymbalov, I., Volkov, R., and Savel’ev, A., Laser Phys. Lett., 2022, vol. 19, no. 7, p. 075401.

    Article  ADS  Google Scholar 

  15. Khazanov, E. et al., High Power Laser Science and Engineering, 2023, pp. 1–77. https://doi.org/10.1017/hpl.2023.69

  16. XCELS. https://xcels.ipfran.ru/.

  17. Derouillat, J. et al., Comput. Phys. Commun., 2018, vol. 222, p. 351.

    Article  ADS  MathSciNet  Google Scholar 

  18. Liao, G.-Q. et al., Phys. Rev. X, 2020, vol. 10, no. 3, p. 031062.

    Google Scholar 

  19. Li, C. et al., Opt. Express, 2014, vol. 22, no. 10, p. 11797.

    Article  ADS  Google Scholar 

  20. Liao, G.Q. et al., Phys. Rev. Lett., 2015, vol. 114, no. 25, p. 255001.

    Article  ADS  Google Scholar 

  21. Ding, W.J. and Sheng, Z.M., Phys. Rev. E, 2016, vol. 93, no. 6, p. 063204.

    Article  ADS  Google Scholar 

  22. Zhang, S. et al., Phys. Plasmas, 2020, vol. 27, p. 23101.

    Article  Google Scholar 

  23. Krukovskii, A.Yu., Novikov, V.G., and Tsygvintsev, I.P., Mat. Model., 2016, vol. 28, no. 7, p. 81.

    MathSciNet  Google Scholar 

  24. Ivanov, K.A. et al., Quantum Electron., 2021, vol. 51, no. 9, p. 768.

    Article  ADS  Google Scholar 

  25. Decker, C.D., Mori, W.B., Tzeng, K.C., and Katsouleas, T., Phys. Plasmas, 1996, vol. 3, no. 5, p. 2047.

    Article  ADS  Google Scholar 

  26. Liao, G.Q. et al., Plasma Phys. Control. Fusion, 2017, vol. 59, no. 1, p. 014039.

    Article  ADS  Google Scholar 

  27. Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P., Phys. Rev. E, 2004, vol. 69, no. 1, p. 12.

    Article  Google Scholar 

  28. Xu, Z. et al., Commun. Phys., 2020, vol. 3, no. 1, p. 1.

    Article  Google Scholar 

  29. Hu, K. and Yi, L., Phys. Rev. A, 2020, vol. 102, no. 2, p. 023530.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I. Tsygvintsev and F. Korneev for calculations of the hydrodynamic expansion of targets.

This study was performed on the equipment of the Faculty of Physics of the Moscow State University subsidized by the Ministry of Science and Higher Education of the Russian Federation within the National Project “Science and Universities” (agreement on grant no. 15-pr/34 on December 29, 2021).

Funding

D. A. Gorlova acknowledges the scholarship support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS.” This study was supported by the Russian Science Foundation in the part concerning the simulation of electron acceleration, grant no. 21-79-10207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gorlova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlova, D.A., Tsymbalov, I.N., Ivanov, K.A. et al. Generation of THz Radiation with Extreme Parameters Using a Multipetawatt Laser Beam. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S829–S836 (2023). https://doi.org/10.3103/S1068335623190065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190065

Keywords:

Navigation