Skip to main content
Log in

Laser-Triggered Ion Acceleration with Low-Density Targets

  • PARTICLE ACCELERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Still unreachable sub-GeV scale laser-accelerated ion energies per nucleon, necessary for a number of practical applications, can be obtained using a new generation ultrashort-pulse laser XCELS. To accelerate ions to such energies, it is proposed to use low-density targets obtained, for example, as a result of pre-irradiation of a solid-state foil with an additional, longer laser pulse. Targets with controlled preplasma on the front side make it possible to significantly increase the efficiency of electron heating and subsequent acceleration of ions by the charge separation field from the rear side of the target. This, in general, classical acceleration mechanism is compared with the recently proposed mechanism of synchronized acceleration of ions by slow light. The PIC simulation of laser acceleration of protons is supplemented by hydrodynamic calculations to find the optimal preplasma profile, which allows high-energy particles to be most efficiently generated. The possibility of generation of a large number of protons with a 1 GeV energy-scale is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Higginson, A., Gray, R.J., King, M., Dance, R.J., Williamson, S.D.R., Butler, N.M.H., Wilson, R., Capdessus, R., Armstrong, C., Green, J.S., Hawkes, S.J., Martin, P., Wei, W.Q., Mirfayzi, S.R., Yuan, X.H., Kar, S., Borghesi, M., Clarke, R.J., Neely, D., and McKenna, P., Nat. Commun., 2018, vol. 9, p. 724.

    Article  ADS  Google Scholar 

  2. Brantov, A.V., Govras, E.A., Bychenkov, V.Y., and Rozmus, W., Phys. Rev. ST Accel. Beams, 2015, vol. 18, p. 021301.

    Article  ADS  Google Scholar 

  3. Sentoku, Y., Bychenkov, V.Yu., Flippo, K., Maksimchuk, A., Mima, K., Mourou, G., Sheng, Z.M., and Umstadter, D., Appl. Phys. B, 2002, vol. 74, p. 207.

    Article  ADS  Google Scholar 

  4. Brantov, A.V., Govras, E.A., Kovalev, V.F., and Bychenkov, V.Yu., Phys. Rev. Lett., 2016, vol. 116, p. 085004.

    Article  ADS  Google Scholar 

  5. Bychenkov, V.Yu., Govras, E.A., and Brantov A.V., JETP Lett., 2016, vol. 104, p. 618.

    Article  ADS  Google Scholar 

  6. Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., MacKinnon, A.J., Gizzi, L.A., Galimberti, M., Clarke, R.J., and Ruhl, H., Plasma Phys. Control. Fusion, 2001, vol. 43, p. A267.

    Article  ADS  Google Scholar 

  7. Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D., and Bychenkov, V.Yu., Appl. Phys. Lett., 2001, vol. 78, p. 595.

    Article  ADS  Google Scholar 

  8. Bulanov, S.V. and Khoroshkov, V.S., Plasma Phys. Rep., 2002, vol. 28, p. 453.

    Article  ADS  Google Scholar 

  9. Snavely, R.A., Zhang, B., Akli, K., Chen, Z., Freeman, R.R., Gu, P., Hatchett, S.P., Hey, D., Hill, J., Key, M.H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A.B., Lasinski, B.F., Lei, A., MacKinnon, A.J., Patel, P., Stephens, R., Tampo, M., Tanaka, K.A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S.C., Yabuuchi, T., and Zheng, J., Phys. Plasmas, 2007, vol. 14, p. 092703.

    Article  ADS  Google Scholar 

  10. Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D., and Powell, H., Phys. Rev. Lett., 2001, vol. 86, p. 436.

    Article  ADS  Google Scholar 

  11. Martins, S.F., Fonseca, R.A., Silva, L.O., and Mori, W.B., Astrophys. J., 2009, vol. 695, p. L189.

    Article  ADS  Google Scholar 

  12. Zheng, F.L., Wu, S.Z., Zhang, H., Huang, T.W., Yu, M.Y., Zhou, C.T., and He, X.T., Phys. Plasmas, 2013, vol. 20, p. 123105.

    Article  ADS  Google Scholar 

  13. Yang, Y.C., Zhou, C.T., Huang, T.W., He, M.Q., Wu, S.Z., Cai, T.X., Qiao, B., Yu, M.Y., Ruan, S.C., and He, X.T., Plasma Phys. Control. Fusion, 2020, vol. 62, p. 085008.

    Article  ADS  Google Scholar 

  14. Romanov, D.V., Bychenkov, V.Yu., Rozmus, W., Capjack, C.E., and Fedosejevs, R., Phys. Rev. Lett., 2004, vol. 93, p. 215004.

    Article  ADS  Google Scholar 

  15. Glazyrin, S.I., Brantov, A.V., Rakitina, M.A., and Bychenkov, V.Yu., High Energy Density Phys., 2020, vol. 36, p. 100824.

    Article  Google Scholar 

  16. Brantov, A.V., Bychenkov, V.Yu., Popov, K.I., Fedosejevs, R., Rozmus, W., and Schlegel, T., Nucl. Instrum. Methods A, 2011, vol. 653, p. 62.

    Article  ADS  Google Scholar 

  17. Brantov A.V., Obraztsova E.A., Chuvilin A.L., Obraztsova E.D., and Bychenkov V.Yu., Phys. Rev. Accel. Beams, 2017, vol. 20, p. 061301.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Brantov or S. I. Glazyrin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantov, A.V., Rakitina, M.A., Glazyrin, S.I. et al. Laser-Triggered Ion Acceleration with Low-Density Targets. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S755–S761 (2023). https://doi.org/10.3103/S106833562319003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833562319003X

Keywords:

Navigation