Skip to main content
Log in

Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research

  • RADIATION GENERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

We consider a possibility of generating high-current beams of ultrarelativistic electrons accelerated in the regime of direct laser acceleration and their application in interdisciplinary research. The key approaches are based on the results of simulations and performed experiments on the interaction of relativistically intense laser pulses with large-scale near-critical density plasma produced using low-density aerogels. The use of a set of XCELS laser pulses will make it possible to achieve the generation efficiency of particles (electrons, positrons, protons, and neutrons) and hard radiation quanta in the energy range of tens of megaelectronvolts, which is orders of magnitude higher than the existing record-high values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wang, T., Ribeyre, X., Gong, Z., Jansen, O., d’Humières, E., Stutman, D., Toncian, T., and Arefiev, A., Phys. Rev. Appl., 2020, vol. 13, no. 5, p. 054024.

    Article  ADS  Google Scholar 

  2. Norreys, P.A., Santala, M., Clark, E., Zepf, M., Watts, I., Beg, F., Krushelnick, K., Tatarakis, M., Dangor, A.E., Fang, X., Graham, P., Mccanny, T., Singhal, R.P., Ledingham, K., Cresswell, A., Sanderson, D., Maghill, J., Machecek, A., Wark, J., and Neely, D., Phys. Plasmas, 1999, vol. 6, no. 5, p. 2150.

    Article  ADS  Google Scholar 

  3. Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., and Yasuike, K., Phys. Plasmas, 2000, vol. 7, p. 2076.

    Article  ADS  Google Scholar 

  4. Gu, Y.-J., Jirka, M., Klimo, O., and Weber, S., Matter Radiat. Extremes, 2019, vol. 4, p. 064403.

    Google Scholar 

  5. Zhu, X.-L., Yu, T.-P., Sheng, Z.-M., Yin, Y., Turcu, I.C.E., and Pukhov, A., Nat. Commun., 2016, vol. 7, p. 13686.

    Article  ADS  Google Scholar 

  6. Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L., and Bell, A.R., Phys. Rev. Lett., 2012, vol. 108, no. 16, p. 165006.

    Article  ADS  Google Scholar 

  7. Kampfrath, T., Tanaka, K., and Nelson, K.A., Nat. Photonics, 2013, vol. 7, p. 680.

    Article  ADS  Google Scholar 

  8. Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger, R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D., Palmer, R., Zwick, T., Koos, C., Freude, W., Ambacher, O., Leuthold, J., and Kallfass, I., Nat. Photonics, 2013, vol. 7, p. 977.

    Article  ADS  Google Scholar 

  9. Herzer, S., Woldegeorgis, A., Polz, J., Reinhard, A., Almassarani, M., Beleites, B., Ronneberger, F., Grosse, R., Paulus, G.G., Hübner, U., May, T., and Gopal, A., New J. Phys., 2018, vol. 20, p. 063019.

    Article  ADS  Google Scholar 

  10. Kostyukov, I., Kiselev, S., and Pukhov, A., Phys. Plasmas, 2003, vol. 10, p. 4818.

    Article  ADS  Google Scholar 

  11. Kiselev, S., Pukhov, A., and Kostyukov, I., Phys. Rev. Lett., 2004, vol. 93, no. 13, p. 135004.

    Article  ADS  Google Scholar 

  12. Rousse, A., Phuoc, K.T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstadter, D., and Hulin, D., Phys. Rev. Lett., 2004, vol. 93, no. 13, p. 135005.

    Article  ADS  Google Scholar 

  13. Cipiccia, S., Islam, M.R., Ersfeld, B., Shanks, R.P., Brunetti, E., Vieux, G., Yang, X., Issac, R.C., Wiggins, S.M., Welsh, G.H., Anania, M.-P., Maneuski, D., Montgomery, R., Smith, G., Hoek, M., Hamilton, D.J., Lemos, N.R.C., Symes, D., Rajeev, P.P., Shea, V.O., Dias, J.M., and Jaroszynski, D.A., Nat. Phys., 2011, vol. 7, p. 867.

    Article  Google Scholar 

  14. Albert, F., Lemos, N., Shaw, J.L., Pollock, B.B., Goyon, C., Schumaker, W., Saunders, A.M., Marsh, K.A., Pak, A., Ralph, J.E., Martins, J.L., Amorim, L.D., Falcone, R.W., Glenzer, S.H., Moody, J.D., and Joshi, C., Phys. Rev. Lett., 2017, vol. 118, no. 13, p. 134801.

    Article  ADS  Google Scholar 

  15. Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., Gopal, A., Heathcote, R., Mangles, S.P.D., Marquès, J.R., Maksimchuk, A., Nilson, P.M., Phuoc, K.T., Reed, S., Tzoufras, M., Tsung, F.S., Willingale, L., Mori, W.B., Rousse, A., Krushelnick, K., and Najmudin, Z., Phys. Rev. Lett., 2008, vol. 100, no. 10, p. 105006.

    Article  ADS  Google Scholar 

  16. Pomerantz, I., McCary, E., Meadows, A.R., Arefiev, A., Bernstein, A.C., Chester, C., Cortez, J., Donovan, M.E., Dyer, G., Gaul, E.W., Hamilton, D., Kuk, D., Lestrade, A.C., Wang, C., Ditmire, T., and Hegelich, B.M., Phys. Rev. Lett., 2014, vol. 113, no. 18, p. 184801.

    Article  ADS  Google Scholar 

  17. Günther, M.M., Rosmej, O.N., Tavana, P., Gyrdymov, M., Skobliakov, A., Kantsyrev, A., Zähter, S., Borisenko, N.G., Pukhov, A., and Andreev, N.E., Nat. Commun., 2022, vol. 13, p. 170.

    Article  ADS  Google Scholar 

  18. Ravasio, A., Koenig, M., Le Pape, S., Benuzzi-Mounaix, A., Park, H.S., Cecchetti, C., Patel, P., Schiavi, A., Ozaki, N., Mackinnon, A., Loupias, B., Batani, D., Boehly, T., Borghesi, M., Dezulian, R., Henry, E., Notley, M., Bandyopadhyay, S., Clarke, R., and Vinci, T., Phys. Plasmas, 2008, vol. 15, p. 060701.

    Article  ADS  Google Scholar 

  19. Li, K., Borm, B., Hug, F., Khaghani, D., Löher, B., Savran, D., Tahir, N.A., and Neumayer, P., Laser Part. Beams, 2014, vol. 32, p. 631.

    Article  ADS  Google Scholar 

  20. Negoita, F., Roth, M., Thirolf, P.G., Tudisco, S., Hannachi, F., Moustaizis, S., Pomerantz, I., McKenna, P., Fuchs, J., Sphor, K., Acbas, G., Anzalone, A., Audebert, P., Balascuta, S., Cappuzzello, F., Cernaianu, M.O., Chen, S., et al., Rom. Rep. Phys., 2016, vol. 68, p. S37.

    Google Scholar 

  21. Habs, D. and Köster, U., Appl. Phys. B, 2010, vol. 103, p. 501.

    Article  ADS  Google Scholar 

  22. Ma, Z., Lan, H., Liu, W., Wu, S., Xu, Y., Zhu, Z., and Luo, W., Matter Radiat. Extremes, 2019, vol. 4, p. 064401.

    Google Scholar 

  23. Willingale, L., Nilson, P.M., Thomas, A.G.R., Bulanov, S.S., Maksimchuk, A., Nazarov, W., Sangster, T.C., Stoeckl, C., and Krushelnick, K., Phys. Plasmas, 2011, vol. 18, p. 056706.

    Article  ADS  Google Scholar 

  24. Willingale, L., Thomas, A.G.R., Nilson, P.M., Chen, H., Cobble, J., Craxton, R.S., Maksimchuk, A., Norreys, P.A., Sangster, T.C., Scott, R.H.H., Stoeckl, C., Zulick, C., and Krushelnick, K., New J. Phys., 2013, vol. 15, p. 025023.

    Article  ADS  Google Scholar 

  25. Toncian, T., Wang, C., McCary, E., Meadows, A., Arefiev, A., Blakeney, J., Serratto, K., Kuk, D., Chester, C., Roycroft, R., Gao, L., Fu, H., Yan, X., Schreiber, J., Pomerantz, I., Bernstein, A., Quevedo, H., Dyer, G., Ditmire, T., and Hegelich, B., Matter Radiat. Extremes, 2016, vol. 1, p. 82.

    Google Scholar 

  26. Pukhov, A., Sheng, Z.-M., and Meyer-ter-Vehn, J., Phys. Plasmas, 1999, vol. 6, p. 2847.

    Article  ADS  Google Scholar 

  27. Willingale, L., Arefiev, A.V., Williams, G.J., Chen, H., Dollar, F., Hazi, A.U., Maksimchuk, A., Manuel, M.J.-E., Marley, E., Nazarov, W., Zhao, T.Z., and Zulick, C., New J. Phys., 2018, vol. 20, p. 093024.

    Article  ADS  Google Scholar 

  28. Arefiev, A.V., Khudik, V.N., Robinson, A.P.L., Shvets, G., Willingale, L., and Schollmeier, M., Phys. Plasmas, 2016, vol. 23, p. 056704.

    Article  ADS  Google Scholar 

  29. Khudik, V., Arefiev, A., Zhang, X., and Shvets, G., Phys. Plasmas, 2016, vol. 23, no. 10, p. 103108.

    Article  ADS  Google Scholar 

  30. Pugachev, L., Andreev, N., Levashov, P., and Rosmej, O., Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, vol. 829, p. 88.

    Google Scholar 

  31. Rosmej, O.N., Andreev, N.E., Zaehter, S., Zahn, N., Christ, P., Borm, B., Radon, T., Sokolov, A., Pugachev, L.P., Khaghani, D., Horst, F., Borisenko, N.G., Sklizkov, G., and Pimenov, V.G., New J. Phys., 2019, vol. 21, p. 043044.

    Article  ADS  Google Scholar 

  32. Rosmej, O.N., Gyrdymov, M., Günther, M.M., Andreev, N.E., Tavana, P., Neumayer, P., Zähter, S., Zahn, N., Popov, V.S., Borisenko, N.G., Kantsyrev, A., Skobliakov, A., Panyushkin, V., Bogdanov, A., Consoli, F., Shen, X.F., and Pukhov, A., Plasma Phys. Controlled Fusion, 2020, vol. 62, p. 115024.

    Article  ADS  Google Scholar 

  33. Andreev, N.E., Popov, V.S., Rosmej, O.N., Kuzmin, A.A., Shaykin, A.A., Khazanov, E.A., Kotov, A.V., Borisenko, N.G., Starodubtsev, M.V., and Soloviev, A.A., Quantum Electron., 2021, vol. 51, p. 1019.

    Article  ADS  Google Scholar 

  34. Rosmej, O.N., Suslov, N., Martsovenko, D., Vergunova, G., Borisenko, N., Orlov, N., Rienecker, T., Klir, D., Rezack, K., Orekhov, A., Borisenko, L., Krousky, E., Pfeifer, M., Dudzak, R., Maeder, R., et al., Plasma Phys. Controlled Fusion, 2015, vol. 57, p. 094001.

    Article  ADS  Google Scholar 

  35. Esarey, E., Schroeder, C.B., and Leemans, W.P., Rev. Mod. Phys., 2009, vol. 81, no. 3, p. 1229.

    Article  ADS  Google Scholar 

  36. Gonsalves, A.J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T.C.H., Steinke, S., Bin, J.H., Bulanov, S.S., van Tilborg, J., Geddes, C.G.R., Schroeder, C.B., Tóth, C., Esarey, E., Swanson, K., Fan-Chiang, L., et al., Phys. Rev. Lett., 2019, vol. 122, no. 8, p. 084801.

    Article  ADS  Google Scholar 

  37. Khazanov, E., Shaykin, A., Kostyukov, I., Ginzburg, V., Mukhin, I., Yakovlev, I., Soloviev, A., Kuznetsov, I., Mironov, S., Korzhimanov, A., Bulanov, D., Shaikin, I., Kochetkov, A., Kuzmin, A., Martyanov, M., Lozhkarev, V., Starodubtsev, M., Litvak, A., and Sergeev, A., High Power Laser Science and Engineering, Accepted manuscript. https://doi.org/10.1017/hpl.2023.69

  38. Pukhov, A., J. Plasma Phys., 1999, vol. 61, p. 425.

    Article  ADS  Google Scholar 

  39. Borisenko, N.G., Akimova, I.V., Gromov, A.I., Khalenkov, A.M., Merkuliev, Y.A., Kondrashov, V.N., Limpouch, J., Kuba, J., Krousky, E., Masek, K., Nazarov, W., and Pimenov, V.G., Fusion Sci. Technol., 2006, vol. 49, p. 676.

    Article  ADS  Google Scholar 

  40. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 506, p. 250.

    Google Scholar 

  41. Stoyer, M.A., Sangster, T.C., Henry, E.A., Cable, M.D., Cowan, T.E., Hatchett, S.P., Key, M., Moran, M.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Singh, M.S., Snavely, R.A., Tabak, M., and Wilks, S.C., Rev. Sci. Instrum., 2001, vol. 72, p. 767.

    Article  ADS  Google Scholar 

  42. Chen, H., Link, A., Sentoku, Y., Audebert, P., Fiuza, F., Hazi, A., Heeter, R.F., Hill, M., Hobbs, L., Kemp, A.J., Kemp, G.E., Kerr, S., Meyerhofer, D.D., Myatt, J., Nagel, S.R., Park, J., Tommasini, R., and Williams, G.J., Phys. Plasmas, 2015, vol. 22, no. 5, p. 056705.

    Article  ADS  Google Scholar 

  43. Bake, M.A. and Elaji, A., Plasma Sci. Technol., 2021, vol. 23, p. 045001.

    Article  ADS  Google Scholar 

  44. Lobok, M.G., Brantov, A.V., Gozhev, D.A., and Bychenkov, V.Yu., Plasma Phys. Controlled Fusion, 2018, vol. 60, p. 084010.

    Article  ADS  Google Scholar 

  45. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Phys. Plasmas, 2020, vol. 27, p. 123103.

    Article  ADS  Google Scholar 

  46. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Phys. Plasmas, 2019, vol. 26, p. 123107.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Comprehensive Program for the Development of Nuclear Science, Engineering, and Technology until 2024 (IAP RAS project no. 075-03-2022-047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Andreev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, N.E., Umarov, I.R. & Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S797–S805 (2023). https://doi.org/10.3103/S1068335623190028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190028

Keywords:

Navigation