Skip to main content
Log in

The Inverse Faraday Effect Induced by Radiation Friction during Irradiation of Dense Plasma with Crossed Multipetawatt Laser Beams

  • QED PROCESSES IN STRONG LASER FIELD
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

We discuss the possibility of an experimental realization of the inverse Faraday effect induced by radiation friction upon irradiation of a dense plasma target with two crossed linearly polarized multipetawatt laser beams. The dependence of the maximum value of the excited longitudinal magnetic field and of the size of the region occupied by this field at the angle 2θ between laser beams is studied. It is shown that the use of a two-beam setup significantly increases the amplitude of the excited magnetic field that can be as high as 2 or 3 GG at intensities of ∼3 × 1023 W/cm2 for beam convergence angles of 2θ ≤ 10°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Guo, Z., Yu, L., Wang, J., Wang, C., Liu, Y., Gan, Z., Li, W., Leng, Y., Liang, X., and Li, R., Opt. Express, 2018, vol. 26, p. 26776.

    Article  ADS  Google Scholar 

  2. Papadopoulos, D.N., Zou, J.P. et al., High Power Laser Sci. Eng., 2016, vol. 4, p. e34.

  3. Sung, J.H., Lee, H.W., Yoo, J.Y., Yoon, J.W., Lee, C.W., Yang, J.M., Son, Y.J., Jang, Y.H., Lee, S.K., and Nam, C.H., Opt. Lett., 2017, vol. 42, p. 2058.

    Article  ADS  Google Scholar 

  4. Gan, Z. et al., Opt. Express, 2017, vol. 25, p. 5169.

    Article  ADS  Google Scholar 

  5. Li, W., et al. Opt. Lett., 2018, vol. 43, p. 5681.

    Article  ADS  Google Scholar 

  6. Khazanov, E. et al., High Power Laser Sci. Eng., 2023, pp. 1–77. https://doi.org/10.1017/hpl.2023.69

  7. Yoon, J.W., Kim, Y.G., Choi, I.W., Sung, J.H., Lee, H.W., Lee, S.K., and Nam, C.H., Optica, 2021, vol. 8, p. 630.

    Article  ADS  Google Scholar 

  8. Cartlidge, E., Science, 2018, vol. 359, p. 382.

    Article  ADS  Google Scholar 

  9. Bashinov, A.V. et al., Eur. Phys. J. Spec. Top., 2014, vol. 223, p. 1105.

    Article  Google Scholar 

  10. Mourou, G., Tajima T., and Bulanov, S.V., Rev. Mod. Phys., 2006, vol. 78, p. 309.

    Article  ADS  Google Scholar 

  11. Di Piazza, A. Muller, C., Hatsagortsyan, K.Z., and Keitel, C.H., Rev. Mod. Phys., 2012, vol. 84, p. 1177.

    Article  ADS  Google Scholar 

  12. Narozhny, N.B. and Fedotov, A.M., Contemp. Phys., 2015, vol. 56, p. 249.

    Article  ADS  Google Scholar 

  13. Blackburn, T.G., Rev. Mod. Plasma Phys., 2020, vol. 4, p. 1.

    Article  ADS  Google Scholar 

  14. Shi, Y., Qin, H., and Fisch, N.J., Phys. Plasmas, 2021, vol. 28, p. 042104.

  15. Gonoskov, A., Blackburn, T.G., Marklund, M., and Bulanov, S.S., Rev. Mod. Phys., 2022, vol. 94, p. 045001.

  16. Popruzhenko, S.V. and Fedotov, A.M., Usp. Fiz. Nauk (in press).

  17. Cole, J.M., Behm, K.T., and Gerstmayr, E., Phys. Rev. X, 2018, vol. 8, p. 011020.

  18. Poder, K., Tamburini, M., and Sarri, G., Phys. Rev. X, 2018, vol. 8, p. 031004.

  19. Macchi, A., Physics, 2018, vol. 11, p. 13.

    Article  Google Scholar 

  20. Liseykina, T.V., Popruzhenko, S.V., and Macchi, A., New J. Phys., 2016, vol. 18, p. 072001.

  21. Popruzhenko S.V., Liseykina T.V., and Macchi A., New J. Phys., 2019, vol. 21, p. 033009.

  22. Liseykina, T.V., Macchi, A., and Popruzhenko, S.V., Eur. Phys. J. Plus, 2021, vol. 136, p. 170.

    Article  Google Scholar 

  23. Derouillat, J. et al., Comput. Phys. Commun., 2018, vol. 222, p. 351.

    Article  ADS  MathSciNet  Google Scholar 

  24. Vshivkov, V.A. et al., Phys. Plasmas, 1998, vol. 5, p. 2727; Liseykina, T. and Bauer, D., Phys. Rev. Lett., 2013, vol. 110, p. 145003.

  25. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika. Teoriya polya (Theoretical Physics. Field Theory), Moscow: Nauka, 1973, vol. 2.

  26. Tamburini, M., Pegoraro, F., Di Piazza, A., Keitel, C.H., and Macchi, A., New J. Phys., 2010, vol. 12, p. 123005.

  27. Samsonov, A.S., Nerush, E.N., and Kostyukov, I.Yu., Quantum Electron., 2021, vol. 51, p. 861.

    Article  ADS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 20-12-00077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Popruzhenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liseykina, T.V., Peganov, E.E. & Popruzhenko, S.V. The Inverse Faraday Effect Induced by Radiation Friction during Irradiation of Dense Plasma with Crossed Multipetawatt Laser Beams. Bull. Lebedev Phys. Inst. 50 (Suppl 6), S700–S705 (2023). https://doi.org/10.3103/S1068335623180082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623180082

Keywords:

Navigation