Skip to main content
Log in

Electron Diffraction Study of the Structural Changes in a Thin GeTe Crystal Exposed to High-Power Femtosecond Laser Radiation

  • INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The possibility of amorphization of a thin germanium telluride crystal irradiated by high-power 800-nm femtosecond laser pulses has been investigated. The sample was a 20-nm-thick film of crystalline semiconductor GeTe. An electron diffractometer with a source of short photoelectron pulses was used to study the structural changes. The electron diffraction patterns were analyzed, and the α- and β- phases have been identified in GeTe. It is established that sample ablation occurs in the strong field of femtosecond laser pulses, which is accompanied by a decrease in the crystalline phase thickness to 5–6 nm without any significant amorphization of the sample. A specific feature of the observed process—the absence of light-induced transition of a thin GeTe film from the crystalline to the amorphous state under femtosecond laser irradiation—is noted. Possible causes of the revealed effect are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Leger, J.M. and Redon, A.M., J. Phys.: Condens. Matter., 1990, vol. 2, p. 5655.

    ADS  Google Scholar 

  2. Onodera, A., Sakamoto, I., and Fujii, Y., Phys. Rev. B, 1997, vol. 56, p. 7935.

    Article  ADS  Google Scholar 

  3. Wuttig, M., Bhaskaran, H., and Taubner, T., Nat. Photonics, 2017, vol. 11, p. 465.

    Article  Google Scholar 

  4. Kooi, B.J. and Wuttig, M., Adv. Mater., 2020, vol. 32, p. 1908302.

  5. Kerres, P., Zhou, Y., Vaishnav, H., Raghuwanshi, M., Wang, J., Häser, M., Pohlmann, M., Cheng, Y., Schön, C.-F., Jansen, Th., Bellin, Chr., Bürgler, D.E., Jalil, A.R., Ringkamp, Chr., Kowalczyk, H., Schneider, C.M., Shukla, Abh., and Wuttig, M., Small, 2022, vol. 18, p. 2201753.

  6. Jeong, Kw., Park, S., Park, D., Ahn, M., Han, J., Yang, W., Jeong, H.-S., and Cho, M.-H., Sci. Rep., 2017, vol. 7, p. 955.

    Article  ADS  Google Scholar 

  7. Kiselev, A.V., Mikhalevsky, V.A., Burtsev, A.A., Ionin, V.V., Eliseev, N.N., Lotin, A.A., Opt. Laser Technol., 2021, vol. 143, p. 107305.

  8. Burtsev, A.A., Eliseev, N.N., Mikhalevsky, V.A., Kiselev, A.V., Ionin, V.V., Grebenev, V.V., Karimov, D.N., and Lotin, A.A., Mater. Sci. Semicond. Process., 2022, vol. 150, p. 106907.

  9. Wu, H., Han, W., and Zhang, X., Materials, 2022, vol. 15, p. 6760.

    Article  ADS  Google Scholar 

  10. Waldecker, L., Miller, T.A., Rude, M., Bertoni, R., Osmond, J., Pruneri, V., Simpson, R., Ernstorfer, R., and Wall, S., Nat. Mater., 2015, vol. 14, p. 991.

    Article  ADS  Google Scholar 

  11. Qi, Y., Chen, N., Vasileiadis, Th., Zahn, D., Seiler, H., Li, X., and Ernstorfer, R., Phys. Rev. Lett., 2022, vol. 129, p. 135701.

  12. Mironov, B.N., Kompanets, V.O., Aseev, S.A., Ishchenko, A.A., Kochikov, I.V., Misochko, O.V., Chekalin, S.V., and Ryabov, E.A., J. Exp. Theor. Phys., 2017, vol. 124, p. 422.

    Article  ADS  Google Scholar 

  13. Mironov, B.N., Aseev, S.A., Ishchenko, A.A., Kochikov, I.V., Chekalin, S.V., and Ryabov, E.A., Quantum Electron., 2020, vol. 50, no. 3, p. 242.

    Article  ADS  Google Scholar 

  14. Aseyev, S.A., Ryabov, E.A., Mironov, B.N., Kochikov, I.V., and Ischenko, A.A., Chem. Phys. Lett., 2022, vol. 797, p. 139599.

  15. Ishchenko, A.A., Girichev, G.V., and Tarasov, Yu.I., Difraktsiya elektronov: Struktura i dinamika svobodnykh molekul i kondensirovannogo sostoyaniya veshchestva (Electron Diffraction: Structure and Dynamics of Free Molecules and Condensed Matter), Moscow: Fizmatlit, 2013.

  16. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals, Londres: Butterworths, 1965.

    Google Scholar 

  17. Paradisanos, I., Kymakis, E., Fotakis, C., Kioseoglou, G., and Stratakis, E., Appl. Phys. Lett., 2014, vol. 105, p. 041108.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-02-00146 A, and performed on a unique scientific facility “Multipurpose Femtosecond Laser-Diagnostic Spectrometric Complex” of the Institute of Spectroscopy of the Russian Academy of Sciences and state assignment no. FFUU-2022-0004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. N. Mironov or E. A. Ryabov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, B.N., Kochikov, I.V., Aseev, S.A. et al. Electron Diffraction Study of the Structural Changes in a Thin GeTe Crystal Exposed to High-Power Femtosecond Laser Radiation. Bull. Lebedev Phys. Inst. 50 (Suppl 5), S552–S559 (2023). https://doi.org/10.3103/S1068335623170086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623170086

Keywords:

Navigation