Skip to main content
Log in

Bell-Shaped Refractive Index Profiles of Multimode Optical Fibers and Method for Calculating Their Optical Properties

  • FIBER OPTICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Optical properties of multimode fibers with refractive index profiles represented by a wide class of bell-shaped analytical functions are investigated. We consider profiles with different curvatures, which are described by functions such as the Fermi–Dirac distributions, Gaussian, cycloid, and a family of hyperbolic functions. Main approaches to determining the solutions to the eigenvalue problem are described. Comparative analysis of optical properties of a set of fiber modes is presented, and their advantages and disadvantages in fiber-optic data transmission systems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Li, M.-J. and Nolan D., J. Lightwave Technol., 2008, vol. 26, p. 1079.

    Article  ADS  Google Scholar 

  2. Miya, T., Terunuma, Y., Hosaka, T., and Moyashita, T., Electron. Lett., 1979, vol. 15, p. 106.

    Article  ADS  Google Scholar 

  3. Cooper, D., Craig, S., Ainslie, B., and Day, C., Br. Telecom Tech. J., 1985, vol. 3, p. 52.

    Google Scholar 

  4. Taga, H., Yamamoto, S., Mochizuki, M., and Wakabayashi, H., Trans. IEICE, 1988, vol. E71, p. 940.

    Google Scholar 

  5. Newhouse, M., Button, L., Chowdhury, D., Liu, Y., and Da Silva, V., Proc. Lasers Electro-Optics Soc. Annu. Meet., 1995, vol. 2, p. 44.

  6. Gnauck, A., Raybon, G., Chandrasekhar, S., Leuthold, J., Doerr, C., Stulz, L., Agarwal, A., Banerjee, S., Grosz, D., Hunsche, S., Kung, A., Marhelyuk, A., Maywar, D., Movassaghi, M., Liu, X., Xu, C., Wei, X., and Gill, D., Optical Fiber Communication Conference and Exhibit: Tech. Dig., Anaheim, CA, USA, 2002, paper FC2.

  7. Puttnam, B., Luís, R., Rademacher, G., Awaji, Y., and Furukawa, H., Proc. 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, 2021, p. 1.

  8. Mitra, P. and Stark, J., Nature, 2001, vol. 411, p. 1027.

    Article  ADS  Google Scholar 

  9. Beppu, S., Soma, D., Sumita, S., Wakayama, Y., Takahashi, H., Tsuritani, T., Morita, I., and Suzuki, M., J. Lightwave Technol., 2020, vol. 38, p. 2835.

    Article  ADS  Google Scholar 

  10. Gowar, J., Optical Communication Systems, London: Prentice Hall, 1984.

    Google Scholar 

  11. Snyder, A. and Love, J., Optical Waveguide Theory, London: Chapman and Hall, 1983.

    Google Scholar 

  12. Marcuse, D., Light Transmission Optics, New York: Van Nostrand Reinhold, 1982.

    Google Scholar 

  13. Yeh, C. and Shimabukuro, F., The Essence of Dielectric Waveguides, New York: Springer, 2008.

    Book  Google Scholar 

  14. Yeh, C. and Lindgren, G., Appl. Opt., 1977, vol. 16, p. 483.

    Article  ADS  Google Scholar 

  15. Dods, S., Integrated Photonics Research and Applications/Nanophotonics, ITuF5, 2006. https://doi.org/10.1364/IPRA.2006.ITUF5

  16. Anisimov, P., Motolygin, V., Zemlyakov, V., and Gao, J., J. Lightwave Technol., 2022, vol. 40, p. 2980.

    Article  ADS  Google Scholar 

  17. Davies, A., The Finite Element Method: An Introduction with Partial Differential Equations, Oxford: Oxford University Press, 2011.

    MATH  Google Scholar 

  18. Smith, G., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford: Clarendon Press, 1986.

    Google Scholar 

  19. Vardapetyan, L. and Demkowicz, L., Math. Comput., 2003, vol. 72, p. 105.

    Article  ADS  Google Scholar 

  20. Dautov, R. and Karchevskii, E., Proc. 3rd International Conference on Transparent Optical Networks, Cracow, Poland, 2001, p. 47.

  21. Svedin, J., IEEE Trans. Microwave Theory Tech., 1989, vol. 37, p. 1708.

    Article  ADS  Google Scholar 

  22. Fernandez, F. and Lu, Y., Electron. Lett., 1990, vol. 26, p. 2125.

    Article  ADS  Google Scholar 

  23. Angkaew, T., Matsuhara, M., and Kumagai, N., IEEE Trans. Microwave Theory Tech., 1987, vol. 35, p. 117.

    Article  ADS  Google Scholar 

  24. Fallahkhair, A., Li, K., and Murphy, T., J. Lightwave Technol., 2008, vol. 26, p. 1423.

    Article  ADS  Google Scholar 

  25. Ansbro, A. and Montrosset, I., IEE Proc.: Optoelectron., 1993, vol. 140, p. 253.

    Google Scholar 

  26. Sveshnikov, A., Bogolyubov, A., Delitsyn, A., Sytchkova, A., and Minaev, D., Comput. Math. Appl., 2000, vol. 40, p. 1387.

    MathSciNet  Google Scholar 

  27. Lusse, P., Stuwe, P., Schule, J., Unger, H.-G., J. Lightwave Technol., 1994, vol. 12, p. 487.

    Article  ADS  Google Scholar 

  28. Dong, H., Chronopoulos, A., Zou, J., and Gopinath, A., J. Lightwave Technol., 1993, vol. 11, p. 1559.

    Article  ADS  Google Scholar 

  29. Lu, Y., Yang, L., Huang, W., and Jian, S., J. Lightwave Technol., 2008, vol. 26, p. 1868.

    Article  ADS  Google Scholar 

  30. Pan, V., Chen, Z., and Zheng, A., Proc. 31st STOC’99, Atlanta, USA, 1999, p. 507.

  31. Harrington, R., Proc. IEEE, 1967, vol. 55, p. 136.

    Article  Google Scholar 

  32. Ney, M., IEEE Trans. Microwave Theory Tech., 1985, vol. 33, p. 972.

    Article  ADS  Google Scholar 

  33. Solimeno, S., Crosignani, B., and DiPorto P., Guiding, Diffraction and Confinement of Optical Radiation, Orlando: Academic Press, 1986.

    Google Scholar 

  34. Zettl, A., Sturm–Liouville Theory, Providence, RI: American Mathematical Society, 2005.

    MATH  Google Scholar 

  35. Pryce, J., Numerical Solution of Sturm–Liouville Problems, Oxford: Clarendon Press, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Gololobov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gololobov, V.M., Motolygin, V.S., Zemlyakov, V.V. et al. Bell-Shaped Refractive Index Profiles of Multimode Optical Fibers and Method for Calculating Their Optical Properties. Bull. Lebedev Phys. Inst. 50 (Suppl 5), S624–S634 (2023). https://doi.org/10.3103/S1068335623170049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623170049

Keywords:

Navigation