Skip to main content
Log in

Photoabsorption and Electron-Impact Dissociation of ArXe+ and KrXe+ Molecular Ions

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A number of optical and kinetic properties of heavy heteronuclear ions of inert gases ArXe+ and KrXe+ formed in the plasma of inert gas mixtures is investigated. Various types of nonadiabatic phototransitions between the ground and excited electronic terms of such ions, which are accompanied by charge exchange, are considered. The contributions of bound–free (photodissociation) and bound–bound phototransitions to the total photoabsorption coefficient under the conditions of thermal excitation of the entire vibration–rotation quasi-continuum are analyzed. We report on the results of calculation of the effective cross sections and rate constants of these processes of continuous absorption of electromagnetic radiation of the visible and UV ranges by ArXe+ and KrXe+ ions at different temperatures of the ionic plasma component. The resonant mechanism of dissociation of ArXe+ and KrXe+ ions by an electron impact in the processes of dissociative recombination and direct dissociative excitation is also considered. Analysis performed in this work extends the physical pattern of radiation-induced and collisional processes in the plasmas of Rg/Xe inert gas mixtures (Rg = Ar, Kr) excited by an electron beam, in gas discharges, and during optical pumping. The results of this study can be used for constructing kinetic models of active media of gas and plasma lasers, radiation sources of the UV range, excimer laser tubes, and microplasma cell arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Basov, N.G. and Danilychev, V.A., Sov. Phys. Usp., 1986, vol. 29, p. 31. https://doi.org/10.1070/PU1986v029n01ABEH003079

    Article  ADS  Google Scholar 

  2. Endo, M. and Walter, R.F., Gas Lasers, Boca Raton, FL: CRC Press, 2007.

    Google Scholar 

  3. Yakovlenko, S.I., Entsiklopediya nizkotemperaturnoy plazmy (Encyclopedia of Low Temperature Plasma), Fortov, V.E., Ed., Moscow: Nauka, 2005, vol. 4, p. 262.

    Google Scholar 

  4. Basov, N.G., Baranov, V.V., Beloglazov, A.A., Danilychev, V.A., Dudin, A.Yu., Zayarnyi, D.A., Korolev, A.G., Romanov, A.V., Ustinovskii, N.N., Kholin, I.V., and Chugunov, A.Yu., Sov. J. Quantum Electron., 1988, vol. 18, p. 287. https://doi.org/10.1070/QE1988v018n03ABEH011497

    Article  ADS  Google Scholar 

  5. Mineev, A.P., Nefedov, S.M., Pashinin, P.P., Goncharov, P.A., Kiselev, V.V., and Stel’makh, O.M., Quantum Electron., 2020, vol. 50, p. 277. https://doi.org/10.1070/QEL17175

    Article  ADS  Google Scholar 

  6. Kholin, I.V., Quantum Electron., 2003, vol. 33, p. 129. https://doi.org/10.1070/QE2003v033n02ABEH002374

    Article  ADS  Google Scholar 

  7. Mel’nikov S.P., Sizov A.N., Sinyanskii A.A., and Miley, G.H., Lasers with Nuclear Pumping, Cham: Springer, 2015, pp. 149–154.

    Book  Google Scholar 

  8. Han, J. and Heaven, M.C., Opt. Lett., 2012, vol. 37, p. 2157.

    Article  ADS  Google Scholar 

  9. Mikheev, P.A., Quantum Electron., 2015, vol. 45, p. 704. https://doi.org/10.1070/QE2015v045n08ABEH015750

    Article  ADS  Google Scholar 

  10. Basov, N.G., Danilychev, V.A., Popov, Yu.M., and Khodkevich, D.D., JETP Lett., 1970, vol. 12, p. 329.

    ADS  Google Scholar 

  11. Basov N.G., Danilychev V.A., and Popov Yu.M., Sov. J. Quantum Electron., 1971, vol. 1, p. 18.

    Article  ADS  Google Scholar 

  12. Basov, N.G., Danilychev, V.A., Dolgikh, V.A., Kerimov, O.M., Lobanov, A.N., Podsosonnyi, A.S., and Suchkov A.F., Sov. J. Quantum Electron., 1975, vol. 5, p. 13. https://doi.org/10.1070/QE1975v005n01ABEH010657

    Article  ADS  Google Scholar 

  13. Gerasimov, G.N., Phys. Usp., 2004, vol. 47, p. 149. https://doi.org/10.1070/PU2004v047n02ABEH001681

    Article  ADS  Google Scholar 

  14. Basov, N.G., Danilychev, V.A., Dudin, A.Yu., Zayarnyi D.A., Ustinovskii, N.N., Kholin, I.V., and Chugunov, A.Yu., Sov. J. Quantum Electron., 1984, vol. 14, p. 1158. https://doi.org/10.1070/QE1984v014n09ABEH006101

    Article  ADS  Google Scholar 

  15. Lei, P., Zhang, Zh., Wang, X., and Zuo, D., Opt. Commun., 2022, vol. 513, p. 128116.

  16. Mikheyev, P.A., Chernyshov, A.K., Svistun, M.I., Ufimtsev, N.I., Kartamysheva, O.S., Heaven, M.C., and Azyazov, V.N., Opt. Express, 2019, vol. 27, p. 38759.

    Article  ADS  Google Scholar 

  17. Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., Dasgupta, A., Hegeler, F., and Petrova, Ts., J. Appl. Phys., 2008, vol. 104, p. 013101.

  18. Gordienko, Yu.N., Khasenov, M.U., Batyrbekov, E.G., Samarkhanov, K.K., Ponkratov, Yu.V., and Amrenov, A.K., Laser Part. Beams, 2019, vol. 37, p. 18.

    Article  ADS  Google Scholar 

  19. Saidi, S., Loukil, H., Khodja, K., Belasri, A., Caillier, B., and Guillot, P., IEEE Trans. Plasma Sci., 2022, vol. 50, p. 2147.

    Article  ADS  Google Scholar 

  20. Popović, D., Mozetič, M., Vesel, A., Primc, G., and Zaplotnik, R., Plasma Process Polym., 2021, vol. 18, p. 2100061.

  21. Basov, N.G., Brunin, A.N., Danilychev, V.A., Degtyarev, A.G., Dolgikh, V.A., and Kerimov, O.M., Sov. J. Quantum Electron., 1977, vol. 7, p. 908. https://doi.org/10.1070/QE1977v007n07ABEH012718

    Article  ADS  Google Scholar 

  22. Basov, N.G., Bakaev, V.G., Grigor’yants, E.A., Danilov, E.O., Zvorykin, V.D., Kobelev, P.V., Metreveli, G.E., Polyanskii, S.V., Proleiko, I.V., Suchkov, A.F., and Sychugov, G.V., Sov. J. Quantum Electron., 1991, vol. 21, p. 816. https://doi.org/10.1070/QE1991v021n08ABEH003959

    Article  ADS  Google Scholar 

  23. Basov, N.G., Vadkovskii, A.D., Zvorykin, V.D., Metreveli, G.E., and Suchkov, A.F., Quantum Electron., 1994, vol. 24, p. 13.

    Article  ADS  Google Scholar 

  24. Basov, N.G. and Krokhin, O.N., Sov. Phys. JETP, 1964, vol. 19, p. 123.

    Google Scholar 

  25. Basov, N.G., Danilychev, V.A., Dolgikh, V.A., Kerimov, O.M., Lebedev, V.S., and Molchanov, A.G., JETP Lett., 1977, vol. 26, p. 16.

    ADS  Google Scholar 

  26. Basov, N.G., Danilychev, V.A., Dolgikh, V.A., Kerimov, O.M., Lebedev, V.S., and Molchanov, A.G., Sov. J. Quantum Electron., 1979, vol. 9, p. 593. https://doi.org/10.1070/QE1979v009n05ABEH009034

    Article  ADS  Google Scholar 

  27. Basov, N.G., Voitik, M.G., Zuev, V.S., and Kutakhov, V.P., Sov. J. Quantum Electron., 1985, vol. 15, p. 1461. https://doi.org/10.1070/QE1985v015n11ABEH007959

    Article  ADS  Google Scholar 

  28. Boichenko, A.M. and Yakovlenko, S.I., Quantum Electron., 2000, vol. 30, p. 681. https://doi.org/10.1070/QE2000v030n08ABEH001791

    Article  ADS  Google Scholar 

  29. Tanaka, Y., Yoshino, K., and Freeman, D.E., J. Chem. Phys., 1975, vol. 62, p. 4484.

    Article  ADS  Google Scholar 

  30. Millet, P., Barrie, A.M., Birot, A., Brunet, H., Dijols, H., Galy, J., and Salamero, Y., J. Phys. B: At. Mol. Phys., 1981, vol. 14, p. 459.

    Article  ADS  Google Scholar 

  31. Tsuji, M., Tanaka, M., and Nishimura, Y., Chem. Phys. Lett., 1996, vol. 256, p. 623.

    Article  ADS  Google Scholar 

  32. Tsuji, M., Tanaka, M., and Nishimura, Y., Chem. Phys. Lett., 1996, vol. 262, p. 349.

    Article  ADS  Google Scholar 

  33. Khasenov, M., Nucl. Instrum. Methods Phys. Res. B, 2020, vol. 482, p. 45.

    Article  ADS  Google Scholar 

  34. Avtaeva, S.V. and Kulumbaev, E.B., Plasma Phys. Rep., 2009, vol. 35, p. 329. https://doi.org/10.1134/S1063780X09040060

    Article  ADS  Google Scholar 

  35. Belasri, A. and Harrache, Z., Plasma Chem. Plasma Process., 2011, vol. 31, p. 787.

    Article  Google Scholar 

  36. Belasri, A., Harrache, Z., and Baba-Hamed, T., Phys. Plasmas, 2003, vol. 10, p. 4874.

    Article  ADS  Google Scholar 

  37. Bendella, S. and Belasri, A., Plasma Devices Oper., 2007, vol. 15, p. 77.

    Article  ADS  Google Scholar 

  38. Postel, O.B. and Cappelli, M.A., Appl. Phys. Lett., 2000, vol. 76, p. 544.

    Article  ADS  Google Scholar 

  39. Ohwa, M., Moratz, T.J., and Kushner, M.J., J. Appl. Phys., 1989, vol. 66, p. 5131.

    Article  ADS  Google Scholar 

  40. Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., and Ponce, D.M., Appl. Phys. Lett., 2006, vol. 88, p. 121120.

  41. Alford, W.J., Hays, G.N., Ohwa, M., and Kushner, M.J., J. Appl. Phys., 1991, vol. 69, p. 1843.

    Article  ADS  Google Scholar 

  42. Dasgupta, A., Apruzese, J.P., Zatsarinny, O., Bartschat, K., and Fischer, C.F., Phys. Rev. A, 2006, vol. 74, p. 012509.

  43. Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., Dasgupta, A., Hegeler, F., and Petrova, Ts., J. Appl. Phys., 2008, vol. 104, p. 013101.

  44. Mineev, A.P., Drozdov, A.P., Nefedov, S.M., Pashinin, P.P., Goncharov, P.A., and Kiselev, V.V., Quantum Electron., 2012, vol. 42, p. 575. https://doi.org/10.1070/QE2012v042n07ABEH014841

    Article  ADS  Google Scholar 

  45. Karelin, A.V., Sinyanskii, A.A., and Yakovlenko, S.I., Quantum Electron., 1997, vol. 27, p. 375. https://doi.org/10.1070/QE1997v027n05ABEH000952

    Article  ADS  Google Scholar 

  46. Mineev, A.P., Nefedov, S.M., Pashinin, P.P., Goncharov, P.A., and Kiselev, V.V., Vestn. Vozd.-Kosm. Oborony, 2018, no. 1 (17), p. 78.

  47. Lebedev, V.S., Kislov, K.S., and Narits, A.A., JETP Lett., 2018, vol. 108, p. 582. https://doi.org/10.1134/S0021364018210087

    Article  ADS  Google Scholar 

  48. Bates, D.R., J. Phys. B: At. Mol. Opt. Phys., 1991, vol. 24, p. 703.

    Article  ADS  Google Scholar 

  49. Ivanov, V.A., Sov. Phys. Usp., 1992, vol. 35, p. 17. https://doi.org/10.1070/PU1992v035n01ABEH002192

    Article  ADS  Google Scholar 

  50. Guberman, S.L., Dissociative Recombination of Molecular Ions with Electrons, New York: Springer, 2013.

    Google Scholar 

  51. Ivanov, V.A., Petrovskaya, A.S., and Skoblo, Yu.E., Opt. Spectrosc., 2013, vol. 114, p. 688. https://doi.org/10.1134/S0030400X13040097

    Article  ADS  Google Scholar 

  52. Ivanov, V.A., Petrovskaya, A.S., and Skoblo, Yu.E., Opt. Spectrosc., 2014, vol. 117, p. 869. https://doi.org/10.1134/S0030400X14120108

    Article  ADS  Google Scholar 

  53. Ivanov, V.A., Petrovskaya, A.S., and Skoblo, Yu.E., Opt. Spectrosc., 2017, vol. 123, p. 692. https://doi.org/10.1134/S0030400X17110091

    Article  ADS  Google Scholar 

  54. Ivanov, V.A., Petrovskaya, A.S., and Skoblo, Yu.E., J. Exp. Theor. Phys., 2019, vol. 128, p. 767. https://doi.org/10.1134/S1063776119030051

    Article  Google Scholar 

  55. Levin, L., Moody, S., Klosterman, E., Center, R., and Ewing, J., IEEE J. Quantum Electron., 1981, vol. 17, p. 2282.

    Article  ADS  Google Scholar 

  56. Ivanov, V.A., Opt. Spectrosc., 1992, vol. 73, p. 374.

    ADS  Google Scholar 

  57. Ivanov, V.A. and Prikhodjko, A.S., J. Phys. B: At. Mol. Opt. Phys., 1991, vol. 24, p. L459.

    Article  ADS  Google Scholar 

  58. Jonkers, J., van de Sande, M., Sola, A., Gamero, A., Rodero, A., van der Mullen, J., Plasma Sources Sci. Technol., 2003, vol. 12, p. 464.

    Article  ADS  Google Scholar 

  59. Marchenko, V.S., J. Exp. Theor. Phys., 1983, vol. 58, p. 292.

    ADS  Google Scholar 

  60. Bultel, A., van Ootegem, B., Bourdon, A., and Vervisch, P., Phys. Rev. E, 2002, vol. 65, p. 046406.

  61. Emmons, D.J. and Weeks, D.E., J. Appl. Phys., 2017, vol. 121, p. 203301.

  62. Emmons, D.J., Weeks, D.E., Eshel, B., and Perram, G.P., J. Appl. Phys., 2018, vol. 123, p. 043304.

  63. Hoskinson, A.R., Gregorio, J., Hopwood, J., Galbally-Kinney, K., Davis, S.J., and Rawlins, W.T., J. Appl. Phys., 2016, vol. 119, p. 233301.

  64. Sun, P., Zuo, D., Mikheyev, P.A., Han, J., and Heaven, M.C., Opt. Express, 2019, vol. 27, p. 22289.

    Article  ADS  Google Scholar 

  65. Kislov, K.S., Narits, A.A., and Lebedev, V.S., Opt. Spectrosc., 2020, vol. 128, p. 1719. https://doi.org/10.1134/S0030400X20110144

    Article  ADS  Google Scholar 

  66. Narits, A.A., Kislov, K.S., and Lebedev, V.S., J. Phys. B: At. Mol. Opt. Phys., 2020, vol. 53, p. 195201. https://doi.org/10.1088/1361-6455/aba3a7

  67. Lebedev, V.S., Kislov K.S., and Narits, A.A., Plasma Sources Sci. Technol., 2020, vol. 29, p. 025002. https://doi.org/10.1088/1361-6595/ab652f

  68. Lebedev, V.S., Kislov, K.S., and Narits, A.A., J. Exp. Theor. Phys., 2020, vol. 130, p. 483. https://doi.org/10.1134/S1063776120030152

    Article  ADS  Google Scholar 

  69. Kislov, K.S., Narits, A.A. and Lebedev, V.S., Opt. Spectrosc., 2020, vol. 128, p. 448. https://doi.org/10.1134/S0030400X20040116

    Article  ADS  Google Scholar 

  70. Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum Mechanics. Non-Relativistic Theory), Moscow: Fizmatlit, 2004.

  71. Bates, D.R., Mon. Not. R. Astron. Soc., 1952, vol. 112, p. 40.

    Article  ADS  Google Scholar 

  72. Lebedev, V.S., Presnyakov, L.P., and Sobel’man, I.I., Astron Rep., 2000, vol. 44, p. 338. https://doi.org/10.1134/1.163856

    Article  ADS  Google Scholar 

  73. Lebedev, V.S., Presnyakov, L.P., and Sobel’man, I.I., JETP Lett., 2000, vol. 72, p. 178. https://doi.org/10.1134/1.1320107

    Article  ADS  Google Scholar 

  74. Lebedev, V.S. and Presnyakov, L.P., J. Phys. B: At. Mol. Opt. Phys., 2002, vol. 35, p. 4347. https://doi.org/10.1088/0953-4075/35/21/303

    Article  ADS  Google Scholar 

  75. Lebedev, V.S., Presnyakov, L.P., and Sobel’man, I.I., Phys. Usp., 2003, vol. 46, p. 473. https://doi.org/10.1070/PU2003v046n05ABEH001334

  76. Nakamura, H., Nonadiabatic Transition: Concepts, Basic Theories and Applications, Singapore: World Scientific, 2011.

    Google Scholar 

  77. Lebedev, V.S., J. Phys. B: At. Mol. Opt. Phys., 1991, vol. 24, p. 1993. https://doi.org/10.1088/0953-4075/24/8/016

    Article  ADS  Google Scholar 

  78. Kislov, K.S., Narits, A.A., and Lebedev, V.S., J. Russ. Laser Res., 2022, vol. 43, p. 556. https://doi.org/10.1007/s10946-022-10081-y

    Article  Google Scholar 

  79. Wadt, W.R., J. Chem. Phys., 1980, vol. 73, p. 3915.

    Article  ADS  Google Scholar 

  80. Sukhorukov, V.L., Petrov, I.D., Schäfer, M., et al., J. Phys. B: Atom. Mol. Opt. Phys., 2012, vol. 45, p. 092001.

  81. Ivanov, V.A., Lebedev, V.S., and Marchenko, V.S., Sov. Phys. JETP, 1988, vol. 67, p. 2225.

    ADS  Google Scholar 

  82. Goreslavskii, S.P., Delone, N.B., and Krainov, V.P., J. Exp. Theor. Phys., 1982, vol. 55, p. 1032.

    ADS  Google Scholar 

  83. Lebedev, V.S. and Beigman, I.L., Physics of Highly Excited Atoms and Ions, Berlin: Springer, 1998.

    Book  Google Scholar 

  84. Lawton, S.A., Richards, J.B., Newman, L.A., Srecht, L., and DeTemple, T.A., J. Appl. Phys., 1979, vol. 50, p. 3888.

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-79-30086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lebedev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, V.S., Kislov, K.S. & Narits, A.A. Photoabsorption and Electron-Impact Dissociation of ArXe+ and KrXe+ Molecular Ions. Bull. Lebedev Phys. Inst. 50 (Suppl 4), S462–S485 (2023). https://doi.org/10.3103/S1068335623160091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623160091

Keywords:

Navigation