Skip to main content
Log in

Laser Thermonuclear Fusion and High Energy Density Physics

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The state-of-the-art research in the field of laser thermonuclear fusion, aimed at initiating controlled inertial confinement fusion, and the progress in high energy density physics achieved both directly in studies on laser fusion and in adjacent fields related to the high-power laser matter interaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. According to the US Department of Energy on December 5, 2022, in an experiment at the NIF facility, ignition was obtained when the released fusion energy was one and a half times higher than the laser energy deposited in the target.

REFERENCES

  1. Basov, N.G. and Krokhin, O.N., Sov. Phys. JETP, 1964, vol. 19, p. 123.

    Google Scholar 

  2. Basov, N.G., Zakharov, S.D., Kryukov, P.G., Senatskii, Yu.V., and Chekalin, S.V., JETP Lett., 1968, vol. 8, p. 14.

    ADS  Google Scholar 

  3. Lowson, J.D., Proc. Phys. Soc. B, 1957, vol. 70, p. 6.

    Article  ADS  Google Scholar 

  4. Rozanov, V.B., Verdon, C.P., Decroisette, M., et al., in Energy from Inertial Fusion, Vienna: IAEA, 1995.

    Google Scholar 

  5. Afanasiev, Yu.V. and Gus’kov, S.Yu., in Nuclear Fusion by Inertial Confinement, Boca Raton: CRC Press, 1993, p. 99.

    Google Scholar 

  6. Lindl, J.D., Phys. Plasmas, 1995, vol. 2, p. 3933.

    Article  ADS  Google Scholar 

  7. Rosenbluth, M.N., Phys. Rev. Lett., 1972, vol. 29, p. 565.

    Article  ADS  Google Scholar 

  8. Liu, C.S., Phys. Fluids, 1974, vol. 17, p. 1211.

    Article  ADS  Google Scholar 

  9. Afanas’ev, Yu.V., Basov, N.G., Volosevich, P.P., et al., Proc. 5th IAEA Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Tokio, Japan, 1974, Vienna: IAEA, 1975, vol. 2, p. 535.

  10. Afanas’ev, Yu.V., Basov, N.G., Volosevich, P.P., et al., JETP Lett., 1975, vol. 21, p. 68.

    ADS  Google Scholar 

  11. Gus’kov, S.Yu., Krokhin, O.N., and Rozanov, V.B., Nucl. Fusion, 1976, vol. 16, p. 957.

    Article  ADS  Google Scholar 

  12. Chanteloup, J.-C. and Albach, D., IEEE Photonics J., 2011, vol. 3, no. 2, p. 245.

    Article  ADS  Google Scholar 

  13. Caird, J.A., Agrawal, V., Bayramian, A., et al., Fusion Sci. Technol., 2009, vol. 56, no. 2, p. 607.

    Article  ADS  Google Scholar 

  14. Taylor, G., Proc. R. Soc. London. Ser. A–Math. Phys. Sci., 1950, vol. 201, p. 192.

  15. Afanas’ev, Yu.V., Demchenko, N.N., Krokhin, O.N., and Rozanov, V.B., Sov. Phys. JETP, 1977, vol. 45, p. 90.

    ADS  Google Scholar 

  16. Afanas’ev, Yu.V., Basov, N.G., Vasin B.L., et al., Sov. Phys. JETP, 1979, vol. 50, p. 1229.

    ADS  Google Scholar 

  17. Moses, E. and Wuest, C.R., Fusion Sci. Technol., 2005, vol. 47, p. 314.

    Article  ADS  Google Scholar 

  18. Kline, J.L., Batha, S.H., Benedetti, L.R., et al., Nucl. Fusion, 2019, vol. 59, p. 112018.

  19. Kritcher, A.L., Young, C.V., Robey, H.F., et al., Nat. Phys., 2022, vol. 18, no. 3, p. 251.

    Article  Google Scholar 

  20. Kritcher, A., IFSA Conf., 2021. www.aps.org/units/maspg/meetings/upload/obenschain-11172021.pdf.

  21. Atzeni, S., Batani, D., Danson, C.N., et al., Europhys. News, 2022, vol. 53, no. 1, p. 18.

    Article  Google Scholar 

  22. Besnard, D., Eur. Phys. J. D, 2006, vol. 44, p. 207.

    Article  ADS  Google Scholar 

  23. Garanin, S.G., Phys. Usp., 2011, vol. 54, p. 415.

    Article  ADS  Google Scholar 

  24. Bel’kov, S.A., Garanin, S.G., Rogachev, V.G., and Gus’kov, S.Yu., Sb. tez. 48-i Mezhdunar. (Zvenigorodskoy) konf. po fizike plazmy i UTS (Proc. 48th Int. (Zvenigorod) Conf. in Plasma Physics and CTS), Zvenigorod, 2021.

  25. Shcherbakov, V.A., Sov. J. Plasma Phys., 1983, vol. 9, p. 240.

    Google Scholar 

  26. Basov, N.G., Gus’kov, S.Yu., and Feoktistov, L.P., J. Sov. Laser Res., 1992, vol. 13, p. 396.

    Article  Google Scholar 

  27. Betti, R., Zhou, C.D., Anderson, K.S., et al., Phys. Rev. Lett., 2007, vol. 98, p. 155001.

  28. Atzeni, S., Shiavi, A., Marohino, A., et al., Plasma Phys. Control. Fusion, 2011, vol. 53, p. 035010.

  29. Rosenberg, M.J., Solodov, A.A., Myatt, J.F., et al., Phys. Rev. Lett., 2018, vol. 120, p. 055001.

  30. Nora, R., Theobald, W., Betti, R., et al., Phys. Rev. Lett., 2015, vol. 114, p. 045001.

  31. Piriz, A.R., Rodriguez, P.G., Tahi, N.A., et al., Phys. Plasmas, 2012, vol. 19, p. 122705.

  32. Theobald, W., Betti, R., Stoekl, C., et al., Phys. Plasmas, 2008, vol. 15, p. 056306.

  33. Lafon, M., Ribeyre, X., and Schurtz, G., Phys. Plasmas, 2010, vol. 17, p. 052704.

  34. Gus’kov, S.Y., Demchenko, N.N., Dmitriev, E.O., et al., Plasma Phys. Control. Fusion, 2022, vol. 64, p. 045011.

  35. Gus’kov, S.Yu., Kasperczyk, A., Pisarchik, T., et al., Quantum Electron., 2006, vol. 36, p. 429.

    Article  ADS  Google Scholar 

  36. Gus’kov S.Yu., Demchenko, N.N., Kasperczyk, A., et al., Laser Part. Beams, 2014, vol. 32, p. 177.

    Article  ADS  Google Scholar 

  37. Antonelli, L., Trela, J., Barbato, F., et al., Phys. Plasmas, 2019, vol. 26, p. 112708.

  38. Theobald, W., Nora, R., Lafon, M., et al., Phys. Plasmas, 2012, vol. 19, p. 102706.

  39. Theobald, W., Nora, R., Seka, W., et al., Phys. Plasmas, 2015, vol. 22, p. 056310.

  40. Aisa, E.L., Ribeyre, X., Duchateau, G., Nguyen-Bui, T., Tikhonchuk, V.T., Colaïtis, A., Betti, R., Bose, A., and Theobald, W., Phys. Plasmas, 2017, vol. 24, p. 112711.

  41. Santos, J., Vauzour, B., Touati, M., et al., New J. Phys., 2017, vol. 19, p. 103005.

  42. Tabak, M., Hammer, J.M., Glinsky, M.E., et al., Phys. Plasmas, 1994, vol. 1, p. 1626.

    Article  ADS  Google Scholar 

  43. Perry, M.D. and Mourou, G., Science, 1994, vol. 264, p. 917.

    Article  ADS  Google Scholar 

  44. Strickland, D. and Mourou, G., Opt. Commun., 1985, vol. 56, p. 219.

    Article  ADS  Google Scholar 

  45. Gus’kov, S.Yu., Quantum Electron., 2001, vol. 31, p. 885.

    Article  ADS  Google Scholar 

  46. Roth, M., Cowan, T.E., Key, M.H., et al., Phys. Rev. Lett., 2001, vol. 86, p. 436.

    Article  ADS  Google Scholar 

  47. Ruhl, H., Bulanov, S.V., Cowan, T.E., et al., Plasma Phys. Rep., 2001, vol. 27, p. 363.

    Article  ADS  Google Scholar 

  48. Bychenkov, V.Yu., Rozmus, V., Maksimchuk A., et al., Plasma Phys. Rep., 2001, vol. 27, p. 1017.

    Article  ADS  Google Scholar 

  49. Caruso, A., Proc. IAEA Technical Committee Meeting on Drivers, Paris, France, 1994, p. 325.

  50. Murakami, M. and Nagatomo, H., Nucl. Instrum. Meth. Phys. Res. A, 2005, vol. 544, p. 67.

    Article  ADS  Google Scholar 

  51. Murakami, M., Nagatomo, H., Azechi, H., et al., Nucl. Fusion, 2006, vol. 46, p. 99.

    Article  ADS  Google Scholar 

  52. Gus’kov, S.Yu., Laser Part. Beams, 2005, vol. 23, p. 255.

    Article  ADS  Google Scholar 

  53. Gus’kov, S.Yu., Plasma Phys. Rep., 2013, vol. 39, p. 1.

    Article  ADS  Google Scholar 

  54. Mourou, G., Tajima, T., and Bulanov, S., Rev. Mod. Phys., 2006, vol. 78, p. 3092006.

  55. Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., and Matafonov, A.P., Phys. Usp., 2008, vol. 51, p. 793.

    Article  ADS  Google Scholar 

  56. Gus’kov, S.Yu., JETP Lett., 2014, vol. 100, p. 71.

    Article  ADS  Google Scholar 

  57. Gus’kov, S.Yu., Kuchugov, P.A., and Vergunova, G.A., Matter Radiat. Extremes, 2021, vol. 6, p. 020301.

  58. Gus’kov, S.Yu., Kuchugov, P.A., Zmitrenko, N.V., and Yakhin, R.A., Plasma Phys. Control. Fusion, 2022, vol. 64, p. 045001.

  59. Akli, K.U., Hansen, S.B., Kemp, A.J., et al., Phys. Rev. Lett., 2008, vol. 100, p. 165002.

  60. Lancaster, K.L., Robinson, A.P.L., Pasley, J., et al., Phys. Plasmas, 2017, vol. 24, p. 083115.

  61. Adak, A., Singh, P.K., Blackman, D.R., Lad, A.D., Chatterjee, G., Pasley, J., Robinson, A.P.L., and Kumar, G.R., Phys. Plasmas, 2017, vol. 24, p. 072702.

  62. Vikhrev, V.V., JETP Lett., 1978, vol. 27, p. 95.

    ADS  Google Scholar 

  63. Bernal, L. and Bruzzone, H., Plasma Phys. Control. Fusion, 2002, vol. 44, p. 95.

    Article  Google Scholar 

  64. Craxton, R.S., Anderson, K.S., Boehly, T.R., et al., Phys. Plasmas, 2015, vol. 22, p. 110501.

  65. Anisimov, S.I., Prokhorov, A.M., and Fortov, V.E., Sov. Phys. Usp., 1984, vol. 27, p. 181.

    Article  ADS  Google Scholar 

  66. Al’tshuler L.V., Trunin R.F., Krupnikov K.K., and Panov, N.F., Phys. Usp., 1996, vol. 39, p. 539.

    Article  ADS  Google Scholar 

  67. Trunin, R.F., Urlin, V.D., and Medvedev, A.B., Phys. Usp., 2010, vol. 53, p. 577.

    Article  ADS  Google Scholar 

  68. Mochalov, M.A., Il’kaev, R.A., Fortov, V.E., et al., JETP Lett., 2010, vol. 92, p. 300.

    Article  ADS  Google Scholar 

  69. Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., and Fortov, V.E., Phys. Usp., 1993, vol. 36, p. 337.

    Article  ADS  Google Scholar 

  70. Trunin, R.F., Phys. Usp., 1994, vol. 37, p. 1123.

    Article  ADS  Google Scholar 

  71. Avrorin, E.N., Simonenko, V.A., and Shibarshov L.A., Phys. Usp., 2006, vol. 49, p. 432.

    Article  ADS  Google Scholar 

  72. Simonenko, V.A., Phys. Usp., 2006, vol. 49, p. 861.

Download references

ACKNOWLEDGMENTS

The author is grateful to G.A. Vergunova, N.N. Demchenko, I.Ya. Doskoch, F.A. Korneev, P.A. Kuchugov, and R.A. Yakhnin for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Gus’kov.

Additional information

Translated by I. Ulitkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, S.Y. Laser Thermonuclear Fusion and High Energy Density Physics. Bull. Lebedev Phys. Inst. 50 (Suppl 4), S395–S404 (2023). https://doi.org/10.3103/S1068335623160042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623160042

Keywords:

Navigation