Skip to main content
Log in

Diffraction on a Perfectly Conducting Ribbon Grating

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

We have solved the scattering problem of an s-polarized normally incident wave from a periodic grating made of thin perfectly conducting ribbons. Using the Riemann–Hilbert method, we have obtained an infinite system of equations for the Fourier coefficients of the electric and magnetic fields. The truncated system has been solved numerically, and rapid convergence to the exact solution has been demonstrated. We have calculated the transmission coefficients as functions of two dimensionless parameters (ratio of the grating period to the wavelength and the grating area fill factor). We have obtained the local field distribution and refined the literature data of the transmission coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Xu, Y. et al., Adv. Opt. Mater., 2019, vol. 7, no. 9, p. 1801433.

  2. Homola, J., Chem. Rev., 2008, vol. 108, no. 2, p. 462.

    Article  Google Scholar 

  3. Zhao, Y. et al., Biosens. Bioelectron., 2019, vol. 142, p. 111505.

  4. Shalabney, A. and Abdulhalim, I., Laser Photonics Rev., 2011, vol. 5, no. 4, p. 571.

    Article  ADS  Google Scholar 

  5. Sarychev, A.K. et al., Phys. Rev. Appl., 2022, vol. 17, p. 044029.

  6. Frumin, L.L. and Shapiro D.A., Opt. Express, 2020, vol. 28, no. 18, p. 26143.

    Article  ADS  Google Scholar 

  7. Efremova, E.A., Perminov, S.V., and Vergeles, S.S., Photonics Nanostruct., 2021, vol. 46, p. 100953.

  8. Nemykin, A.I. et al., Quantum Electron., 2015, vol. 45, no. 3, p. 240.

    Article  ADS  Google Scholar 

  9. Nemykin, A., Frumin, L., and Shapiro, D., Sensors, 2022, vol. 22, p. 449.

    Article  ADS  Google Scholar 

  10. Chandra, V. and Ranjan, R., Opt. Quantum Electron., 2021, vol. 53, p. 457.

    Article  Google Scholar 

  11. Tamagnone, M. et al., Appl. Phys. Lett., 2012, vol. 101, no. 21, p. 214102.

  12. Salakhova, N.S. et al., Phys. Rev. B, 2021, vol. 104, no. 8, p. 085424.

  13. Kaliberda, M. et al., Int. J. Microwave Wireless Technol., 2019, vol. 11, no. 4, p. 326.

    Article  Google Scholar 

  14. Shestopalov, V.P., Metod zadachi Rimana–Gil’berta v teorii difraktsii i rasprostraneniya elektromagnitnykh voln (Method of the Riemann–Hilbert Problem in the Theory of Diffraction and Propagation of Electromagnetic Waves), Kharkov: Izd. Khark. Univ., 1971.

  15. Vorobyov, S.N. and Lytvynenko, L.M., IEEE Trans. Antennas Propag., 2011, vol. 59, no. 6, p. 2169.

    Article  ADS  Google Scholar 

  16. Brovenko, A.V. et al., Prog. Electromagn. Res. B, 2010, vol. 23, p. 109.

    Article  Google Scholar 

  17. Gakhov, F.D., Boundary Value Problems, New York: Elsevier, 2014.

    Google Scholar 

  18. Vainshtein, L.A., Elektromagnitnye volny (Electromagnetic Waves), Moscow: Radio i svyaz’, 1988.

  19. Muskhelishvili, N.I., Singulyarnye integral’nye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoy fizike (Singular Integral Equations. Boundary Value Problems of Function Theory and Some of Their Applications to Mathematical Physics), Moscow: Nauka, 1968.

  20. Rautian, S.G., Vvedenie v fizicheskuyu optiku (Introduction to Physical Optics), Moscow: Librokom, 2009.

  21. Sologub, V.G., USSR Comput. Math. Math. Phys., 1972, vol. 12, no. 4, p. 159.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.V. Belai for fruitful discussion of some aspects in interpretation of results.

Funding

This study was supported by the Russian Science Foundation (project no. 22-22-00633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shapiro.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemykin, A.V., Shapiro, D.A. Diffraction on a Perfectly Conducting Ribbon Grating. Bull. Lebedev Phys. Inst. 50 (Suppl 3), S355–S365 (2023). https://doi.org/10.3103/S1068335623150113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623150113

Keywords:

Navigation