Skip to main content
Log in

Numeric-Analytical Calculation of Actuator Influence Functions of a Rectangular Deformable Mirror with Free Edges

  • APPLICATION OF LASERS AND OTHER QUESTIONS OF QUANTUM ELECTRONICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

A new method for calculating the actuator influence functions of a rectangular deformable mirror with free edges in a model of concentrated loads is presented. The deflection function of the mirror is sought in the form of the Fourier series as an expansion into modes of natural vibrations of a thin rectangular plate with free edges. The vibration modes are calculated numerically using the finite element method. The resulting modes are substituted into the expressions for calculating the coefficients of the terms of the series used (partial sum). This solution is verified by comparing with the calculation of the influence functions fully based on the finite element method in ANSYS software. The result can be used for selection and optimization of the scheme for the actuator layout of rectangular and square deformable mirrors used in of adaptive optics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tyson, R.K., Principles of Adaptive Optics, Boca Raton: CRC Press, 2015.

    Book  Google Scholar 

  2. Taranenko, V.G. and Shanin, O.I., Adaptivnaya optika v priborakh i ustroistvakh (Adaptive Optics in Devices and Tools), TsNIIatominform, 2005.

  3. Malashko, Ya.I. and Naumov, M.B., Sistemy formirovaniya moshchnykh lazernykh puchkov (Systems for Forming Powerful Laser Beams), Moscow: Radiotekhnika, 2013.

    Google Scholar 

  4. Hu, L. et al., Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility, High Power Laser Sci. Eng., 2014, vol. 2, p. el. https://doi.org/10.1017/hpl.2014.4

  5. Samarkin, V.V., Aleksandrov, A.G., et al., Study of a wide-aperture combined deformable mirror for high-power pulsed phosphate glass lasers, Quantum Electron., 2015, vol. 45, no. 12, p. 1086. https://doi.org/10.1070/QE2015v045n12ABEH015961

    Article  ADS  Google Scholar 

  6. Menikoff, A., Actuator influence functions of active mirrors Appl. Opt., 1991, vol. 30, no. 7, pp. 833–838. https://doi.org/10.1364/AO.30.000833

    Article  ADS  Google Scholar 

  7. Lyakhov, D.M., Sbornik trudov NII NPO “LUCh” (Coll. Works of LUCh Scientific and Production Association), Podolsk: 2006—2016.

  8. Yagnyatinskiy, D.A. and Fedoseyev, V. N., Analytical solution for the actuators influence functions of a circular deformable mirror with free edge under concentrated loads, Optoelectron. Instrum. Data Proces., 2021, vol. 57, no. 1, pp. 60–69. https://doi.org/10.3103/S8756699021010131

    Article  ADS  Google Scholar 

  9. Garcia, H.R. and Brooks, L.D., Characterization techniques for deformable metal mirrors, Proc. SPIE, 1978, vol. 0141 (Adaptive Optical Components), p. 74. https://doi.org/10.1117/12.956515

  10. Huang, L. et al., Modified Gaussian influence function of deformable mirror actuators, Opt. Express, 2008, vol. 16, no. 1, pp. 108–114. https://doi.org/10.1364/OE.16.000108

    Article  ADS  Google Scholar 

  11. Papkov, S.O., Vibrations of a rectangular orthotropic plate with free edges: Analysis and solution of an infinite aystem, Acoust. Phys., 2015, vol. 61, no. 2, pp. 136–143. https://doi.org/10.1134/S106377101501008X

    Article  ADS  Google Scholar 

  12. Serjantović, I. et al., An approximate analytical procedure for natural vibration analysis of free rectangular plates, Thin Wall. Struct., 2015, vol. 95, pp. 101–114. https://doi.org/10.1016/j.tws.2015.06.015

    Article  Google Scholar 

  13. Serjantović, I. et al., An analytical solution to free rectangular plate natural vibrations by beam modes–Ordinary and missing plate modes, Trans. Famena, 2016, vol. 40, no. 3, pp. 1–18. https://doi.org/10.21278/TOF.40301

    Article  Google Scholar 

  14. Lyakhov, D.M., Optimal arrangement of actuators for square mirrors with free edges, Optoelectron. Instrum. Data Process., 2016, vol. 52, no. 1, pp. 57–64. https://doi.org/10.3103/S875669901601009X

    Article  Google Scholar 

  15. Fedoseev, V.N. and Yagnyatinskiy, D.A., Deflection of a thin rectangular plate with free edges under concentrated loads, Mech. Solids, 2019, vol. 54, no. 5, pp. 750–755. https://doi.org/10.3103/S0025654419050078

    Article  ADS  MATH  Google Scholar 

  16. Timoshenko, S.P. and Voinovskii–Kriger S., Plastinki i obolochki (Plates and Shells), Moscow: Nauka, 1966.

  17. Babakov, I.M., Teoriya kolebanii (Theory of Oscillations), Moscow: Nauka, 1965.

    Google Scholar 

  18. Sachs, R. et al., Application of adaptive optics for controlling the NIF laser performance and spot size, Proc. SPIE, 1999, vol. 3492, pp. 344–354. https://doi.org/10.1117/12.354146

    Article  ADS  Google Scholar 

  19. Nemilov, S.V., Opticheskoe materialovedenie. Opticheskie stekla (Optical Materials Science: Optical Glasses), St. Petersburg, S.-Peterb. Gos. Univ. ITMO, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Yagnyatinskiy or V. N. Fedoseyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagnyatinskiy, D.A., Fedoseyev, V.N. Numeric-Analytical Calculation of Actuator Influence Functions of a Rectangular Deformable Mirror with Free Edges. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S114–S123 (2023). https://doi.org/10.3103/S1068335623130146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130146

Keywords:

Navigation