Skip to main content
Log in

Heating Dynamics of the Active Region of High-Power Semiconductor Lasers (λ = 1060 nm) with an Ultra-Wide Aperture (800 µm) in the Quasi-CW Mode

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

An approach is developed to study temporal behavior of the active region overheating in high-power semiconductor lasers (λ = 1060 nm) with an ultrawide aperture (800 μm) operating in a quasi-continuous regime of pumping by current pulses with an amplitude of 21 A, a duration of 1 ms, and a repetition rate of 10 Hz. The approach is based on measuring the lasing dynamics with spectral selection. The lasing spectrum analysis shows that the region of the rising edge, where the amplitude of the current pulse increases, is characterized by a maximum red-shift rate of 30 nm ms–1, which is due to both thermal and nonthermal effects. The pulse region corresponding to a constant pump current amplitude is characterized only by a thermal red shift of the lasing spectrum long-wavelength edge at a rate of ~1 nm ms–1. The obtained experimental active region overheating is 2.78°C for the constant pump current amplitude range, which agrees with the calculated overheating of 3.08°C for the pump conditions under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Crump, P.A., Wilkens, M., Hübner, M., Arslan, S., Niemeyer, M., Basler, P.S., Martin, D., MaaBdorf, A., Ginolas, A., and Trankle, G., Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers, Proc. SPIE, 2020, vol. 11262, p. 1126204. https://doi.org/10.1117/12.2545991

  2. Karow, M.M., Frevert, C., Platz, R., Knigge, S., MaaBdorf, A., Erbert, G., and Crump, P., Efficient 600-W-laser bars for long-pulse pump applications at 940 and 975 nm, IEEE Photonics Technol. Lett., 2017, vol. 29, no. 19, p. 1683. https://doi.org/10.1109/LPT.2017.2743242

    Article  ADS  Google Scholar 

  3. Karow, M.M., Martin, D., Della Casa, P., Erbert, G., and Crump, P.A., Design progress for higher efficiency and brightness in 1 kW diode-laser bars, Proc. SPIE, 2020, vol. 11262, p. 1126205. https://doi.org/10.1117/12.2545918

  4. Ma, X., Zhang, N., Zhong, L., Liu, S., and Jing, H., Research progress of high power semiconductor laser pump source, High Power Laser and Particle Beams, 2020, vol. 32, p. 121010. https://doi.org/10.11884/HPLPB202032.200236

  5. Zediker, M.S. and Zucker, E., High-power diode laser technology XX: A retrospective on 20 years of progress, Proc. SPIE, 2022, vol. 11983, p. 1198302. https://doi.org/10.1117/12.2615260

  6. Brauch, U., Rocker, C., Graf, T., and Abdou Ahmed, M., High-power, high-brightness solid-state laser architectures and their characteristics, Appl. Phys. B, 2022, vol. 128, no. 58. https://doi.org/10.1007/s00340-021-07736-0

  7. Hanxuan, L., Towe, T., Chyr, I., Brown, D., Touyen, N., Reinhardt, F., Xu, J., Srinivasan, R., Berube, M., Truchan, T., Bullock, R., and Harrison, Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar, J. IEEE Photonics Technol. Lett., 2007, vol. 19, no. 13, pp. 960–962. https://doi.org/10.1109/LPT.2007.898820

  8. Hostetler, J., Jiang, C.-L., Roff, R., Negoita, V., Strohmaier, S., Tillkorn, C., Radionova, R., Miester, C., Vethake, T., Bonna, U., Huonker, M., Schmitz, C., and Dorsch, F., Passive cooling effects of low and high fill-factor 937 nm 1 cm arrays, Proc. SPIE, 2008, vol. 6876, p. 68760A. https://doi.org/10.1117/12.763443

  9. Slipchenko, S.O., Podoskin, A.A., Veselov, D.A., Strelets, V.A., Rudova, N.A., Pikhtin, N.A., Bagaev, T.A., Ladugin, M.A., Marmalyuk, A.A., and Kop’ev, P.S., Tunnel-coupled laser diode microarray as a kW-level 100-ns pulsed optical power source (λ = 910 nm), IEEE Photonics Technol. Lett., 2022, vol. 34, no. 1, pp. 35–38. https://doi.org/10.1109/LPT.2021.3134370

    Article  ADS  Google Scholar 

  10. Slipchenko, S.O., Podoskin, A.A., Veselov, D.A., Efremov, L.S., Zolotarev, V.V., Kazakova, A.E., Kop’ev, P.S., and Pikhtin, N.A., Vertical stacks of pulsed (100 ns) mesa-stripe semiconductor lasers with an ultra-wide (800 μm) aperture emitting kilowatt-level peak power at a wavelength of 1060 nm, Quantum Electron., 2022, vol. 52, no. 2, pp. 171–173. https://doi.org/10.1070/QEL17985

    Article  ADS  Google Scholar 

  11. Slipchenko, S.O.,  Romanovich, D.N.,  Gavrina, P.S.,  Veselov, D.A.,  Bagaev, T.A.,  Ladugin, M.A.,  Marmalyuk, A.A., and Pikhtin, N.A., High-power mesa-stripe semiconductor lasers (910 nm) with an ultra-wide emitting aperture based on tunnel-coupled InGaAs/AlGaAs/GaAs heterostructures, Quantum Electron., 2022, vol. 52, no. 2, pp. 174–178. https://doi.org/10.1070/QEL17986

    Article  ADS  Google Scholar 

  12. Slipchenko, S.O., Romanovich, D.N., Kapitonov V.A., Bakhvalov K.V., Pikhtin, N.A., and Kop’ev, P.S., High-power quasi-cw semiconductor lasers (1060 nm) with an ultra-wide emitting aperture, Quantum Electron., 2022, vol. 52, no. 4, p. 340. https://doi.org/10.1070/QEL18014

    Article  ADS  Google Scholar 

  13. Schroder, D., Meusel, J., Hennig, P., Lorenzen, D., Schroder, M., Hulsewede, R., and Sebastian, J., Increased power of broad-area lasers (808nm/980nm) and applicability to 10-mm bars with up to 1000 Watt QCW, Proc. SPIE, 2007, vol. 6456, p. 64560N. https://doi.org/10.1117/12.700021

  14. Lorenzen, D., Schroder, M., Meusel, J., Hennig, P., Konig, H., Philippens, M., Sebastian, J., and Hülsewede, R., Comparative performance studies of indium and gold-tin packaged diode laser bars, Proc. SPIE, 2006, vol. 6104, p. 610404. https://doi.org/10.1117/12.659047

  15. Bai, J.G., Chen, Z., Leisher, P., Bao, L., DeFranza, M., Grimshaw, M., DeVito, M., Martinsen, R., Kanskar, M., and Haden, J., High-efficiency kW-class QCW 88x-nm diode semiconductor laser bars with passive cooling, Proc. SPIE, 2012, vol. 8241, p. 82410W. https://doi.org/10.1117/12.910244

  16. Menzel, U., Barwolff, A., Enders, P., Ackermann, D., Puchert, R., and Voss, M., Modelling the temperature dependence of threshold current, external differential efficiency and lasing wavelength in QW laser diodes, Semicond. Sci. Technol., 1995, vol. 10, no. 10, p. 1382. https://doi.org/10.1088/0268-1242/10/10/013

    Article  ADS  Google Scholar 

  17. Carter, J., Snyder, D., and Reichenbaugh, J., Temperature dependence of optical wavelength shift as a validation technique for pulsed laser diode array thermal modeling, Proc. 19th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, 2003. https://doi.org/10.1109/STHERM.2003.1194385

  18. Chen, C., Xin, G., Qu, R., and Fang, Z., Measurement of thermal rise-time of a laser diode based on spectrally resolved waveforms, Opt. Commun., 2006, vol. 260, no. 1, pp. 223–226. https://doi.org/10.1016/j.optcom.2005.10.011

    Article  ADS  Google Scholar 

  19. Kowalczyk, E., Ornoch, L., Gniazdowski, Z., and Mroziewicz, B., Dynamics of thermo-optical properties of semiconductor lasers, Proc. SPIE, 2007, vol. 6456, p. 64561G. https://doi.org/10.1117/12.700548

  20. Usechak, N.G. and Hostetler, J.L., Single-shot, high-speed, thermal-interface characterization of semiconductor laser arrays, IEEE J. Quantum Electron., 2009, vol. 45, no. 5, pp. 531–541. https://doi.org/10.1109/JQE.2009.2013097

    Article  ADS  Google Scholar 

  21. Voss, M., Lier, C., Menzel, U., Barwolff, A., and Elsaesser, T., Time-resolved emission studies of GaAs/AlGaAs laser diode arrays on different heat sinks, J. Appl. Phys., 1996, vol. 79, no. 2, pp. 1170–1172. https://doi.org/10.1063/1.360900

    Article  ADS  Google Scholar 

  22. Zhang, H., Jia, Y., Zah, C.-E., and Liu, X., Thermally induced chirp studies on spectral broadening of semiconductor laser diode arrays, Appl. Opt., 2018, vol. 57, no. 20, pp. 5599–5603. https://doi.org/10.1364/AO.57.005599

    Article  ADS  Google Scholar 

  23. Min, Y.J., Palisoc, A.L., and Lee, C.C., Transient thermal study of semiconductor devices, IEEE Trans. Compon., Hybrids and Manuf. Technol., 1990, vol. 13, no. 4, pp. 980–988. https://doi.org/10.1109/33.62539

    Article  Google Scholar 

  24. Carter, J., Snyder, D., and Reichenbaugh, J., Transient thermal modeling of high-power pulsed laser diode arrays, Proc. 19th Annual IEEE Semiconductor Thermal Measurement and Management Symp., San Jose, 2003, IEEE, 2003, pp. 276–283. https://doi.org/10.1109/STHERM.2003.1194374

Download references

Funding

The work is supported by the Russian Science Foundation, project no. 19-79-30072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shashkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashkin, I.S., Rybkin, A.D., Kryuchkov, V.A. et al. Heating Dynamics of the Active Region of High-Power Semiconductor Lasers (λ = 1060 nm) with an Ultra-Wide Aperture (800 µm) in the Quasi-CW Mode. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S18–S24 (2023). https://doi.org/10.3103/S1068335623130122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130122

Keywords:

Navigation