Skip to main content
Log in

Orthogonal Two-Wave Vector Interaction in a Gyrotropic Photorefractive Crystal

  • APPLICATION OF LASERS AND OTHER QUESTIONS OF QUANTUM ELECTRONICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

We have proposed and tested a new scheme of organization of an adaptive interferometer, which is based on the orthogonal geometry of the two-wave vector interaction in a gyrotropic photorefractive crystal. The mathematical model developed here makes it possible to calculate the efficiency of the two-wave interaction in a gyrotropic photorefractive crystal in the orthogonal geometry. The model is used to determine the conditions in which the regime of polarization independence of the additive interferometer is realized. It is shown that the polarization independence is attained due to the natural rotation of the polarization plane of light waves in a crystal, which is caused by optical gyrotropy. The key feature of the approach developed here is the possibility of attaining such a regime using only one reference wave in contrast to other analogous methods, in which two reference waves are required; this makes it possible to substantially simplify the design of the adaptive interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Stepanov, S.I., International Trends in Optics, New York: Goodman Academic, 1991, Chapter 9.

    Google Scholar 

  2. Kamshilin, A.A., Romashko, R.V., and Kulchin, Y.N., Adaptive interferometry with photorefractive crystals, J. Appl Phys., 2009, vol. 105, no. 3, p. 031101. https://doi.org/10.1063/1.3049475

  3. Solymar, L., Webb, D., and Grunnet-Jepsen, A., The Physics and Applications of Photorefractive Materials, Oxford: Clarendon, 1996.

    Google Scholar 

  4. Murray, T.W., Tuovinen, H., and Krishnaswamy, S., Adaptive optical array receivers for detection of surface acoustic waves Appl. Opt., 2000, vol. 39, no. 19, pp. 3276–3284. https://doi.org/10.1364/AO.39.003276

    Article  ADS  Google Scholar 

  5. Yu, P., Peng, L., Nolte, D., and Melloch, M., Ultrasound detection through turbid media, Opt. Lett., 2003, vol. 28, no. 10, pp. 819–821. https://doi.org/10.1364/OL.28.000819

    Article  ADS  Google Scholar 

  6. Romashko, R.V., Kulchin, Y.N., and Nippolainen, E., Highly sensitive and noise-protected adaptive optical microphone based on a dynamic photorefractive hologram, Laser Phys., 2014, vol. 24, no. 11, p. 115604. https://doi.org/10.1088/1054-660X/24/11/115604

  7. Romashko, R.V., Kulchin, Yu.N., Bezruk, M.N., and Ermolaev, S.A., Laser adaptive holographic hydrophone, Quantum Electron., 2016, vol. 46, no. 3, p. 277 https://doi.org/10.1070/QEL15976

    Article  ADS  Google Scholar 

  8. Romashko, R.V., Kulchin, Yu.N., Storozhenko, D.V., Bezruk, M.N., and Dzuba, V.P., Laser adaptive vector-phase hydroacoustic measuring system, Quantum Electron., 2021, vol. 51, no. 3, p. 265. https://doi.org/10.1070/QEL17507

    Article  ADS  Google Scholar 

  9. Romashko, R.V., Efimov, T.A., and Kulchin, Yu.N., Laser adaptive holographic system for microweighing of nanoobjects Quantum Electron., 2014, vol. 44, no. 3, p. 269. https://doi.org/10.1070/QE2014v044n03ABEH015348

    Article  ADS  Google Scholar 

  10. Georges, M. and Thizy, C., Photorefractive holographic camera for monitoring deformations of MEMS, J. Micro/Nanolithography, MEMS and MOEMS, 2015, vol. 14, no. 4, p. 041306. https://doi.org/10.1117/1.JMM.14.4.041306

  11. Barbosa, E., Preto, A., Silva, D., Carvalho, J., and Morimoto, N., Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects, Opt. Commun., 2008, vol. 281, no. 3, pp. 408–414. https://doi.org/10.1016/j.optcom.2007.09.055

    Article  ADS  Google Scholar 

  12. Romashko, R.V., Kulchin, Y.N., Girolamo, S.D., Kamshilin, A.A., and Launay, J.C., Adaptive fiber-optical sensor system for pico-strain and nano-displacement metrology, Key Eng. Mater., 2008, vol. 381–382, pp. 61–64. https://doi.org/10.4028/www.scientific.net/KEM.381-382.61

    Article  Google Scholar 

  13. Sokolov, I. and Bryushinin, M., Adaptive photodetectors using wide-gap photorefractive sillenite crystals for vibration monitoring, Proc. SPIE, 2007, vol. 6739, p. 673909. https://doi.org/10.1117/12.737277

  14. Girolamo, S., Kamshilin, A., Romashko, R., Kulchin, Y., and Launay, J.C., Sensing of multimode-fiber strain by a dynamic photorefractive hologram, Opt. Lett., 2007, vol. 32, no. 13, pp. 1821–1823. https://doi.org/10.1364/OL.32.001821

    Article  ADS  Google Scholar 

  15. Ke, J., Duan, Ch., Yi, W., and Yan, Ch., Application of an adaptive two-wave mixing interferometer for detection of surface defects, Proc. 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, 2016, IEEE, 2016, pp. 2142–2146. https://doi.org/10.1109/PIERS.2016.7734892

  16. Georges, M., Thizy, C., Scauflaire, V., Ryhon, S., Pauliat, G., Lemaire, P., and Roosen, G., Dynamic holographic interferometry with photorefractive crystals: review of applications and advanced techniques, Proc. SPIE, 2003, vol. 4933, p. 250. https://doi.org/10.1117/12.516646

    Article  ADS  Google Scholar 

  17. Bashkov, O., Romashko, R., Zaykov, V., Protsenko, A., Bezruk, M., and Htoo, H., Detection of acoustic emission signals in the polymer composite material by adaptive fiber-optic sensors, Proc. SPIE, 2016, vol. 10176, p. 1017613. https://doi.org/10.1117/12.2268226

  18. Nehmetallah, G., Banerjee, P., and Khoury, J., Adaptive defect and pattern detection in amplitude and phase structures via photorefractive four-wave mixing, Appl. Opt., 2015, vol. 54, no. 32, pp. 9622–9629. https://doi.org/10.1364/AO.54.009622

    Article  ADS  Google Scholar 

  19. Zhao, Y., Ma, J., Zhang, Z., Zhu, Y., and Krishnaswamy, S., OSA Technical Digest, 2016, p. Th1A.8. https://doi.org/10.1364/APOS.2016

  20. Kemper, B., Carl, D., Knoche, S., Thien, R., and von Bally, G., Holographic interferometric microscopy systems for the application on biological samples, Proc. SPIE, 2004, vol. 5457, p. 581. https://doi.org/10.1117/12.543996

    Article  ADS  Google Scholar 

  21. Xu, X., Zhang, H., Hemmer, P., Qing, D., Kim, C., and Wang, L., Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography, Opt. Lett., 2007, vol. 32, no. 6, pp. 656—658. https://doi.org/10.1364/OL.32.000656

    Article  ADS  Google Scholar 

  22. Jayet, B., Huignard, J.-P., and Ramaz, F., Fast wavefront adaptive holography in Nd:YVO4 for ultrasound optical tomography imaging, Opt. Express, 2014, vol. 22, no. 17, pp. 20622–2063. https://doi.org/10.1364/OE.22.020622

    Article  ADS  Google Scholar 

  23. Ramaz, F., Forget, B.C., Atlan, M., Boccara, A.C., Gross, M., Delaye, P., and Roosen, G., Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues, Opt. Express, 2004, vol. 12, no. 22, pp. 5469–5474. https://doi.org/10.1364/OPEX.12.005469

    Article  ADS  Google Scholar 

  24. Efimov, T., Kulchin, Y., and Romashko, R., Laser biosensor based on micromechanical oscillator, Proc. SPIE, 2019, vol. 11024, p. 110240G. https://doi.org/10.1117/12.2519607

  25. Di Girolamo, S., Romashko, R., Kulchin, Y., and Kamshilin, A., Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation, Opt. Commun., 2010, vol. 283, no. 1, pp. 128–131. https://doi.org/10.1016/j.optcom.2009.09.035

    Article  ADS  Google Scholar 

  26. Romashko, R., Kulchin, Y., and Kamshilin, A., Polarization-intensitive adaptive interferometer based on orthogonal three-wave mixing in photorefractive crystal, Pac. Sci. Rev., 2011, vol. 13, no. 3, pp. 252–254.

    Google Scholar 

  27. Romashko, R., Asalkhanova, M., and Kulchin, Y., Orthogonal three-wave mixing in InP crystal, Proc. SPIE, 2016, vol. 10176, p. 101761U. https://doi.org/10.1117/12.2268118

  28. James, R. and Iizuka, K., Polarization insensitive homodyne detection with all optical processing based on the photorefractive effect, J. Lightwave Technol., 1993, vol. 11, no. 4, pp. 633–638. https://doi.org/10.1109/50.248128

    Article  ADS  Google Scholar 

  29. Delaye P., Blouin A., Drolet D., Monchalin J., De Montmorillon L., and Roosen G., Polarization independent phase demodulation using photorefractive two-wave mixing, Appl. Phys. Lett., 1999, vol. 74, no. 21, pp. 3087–3089. https://doi.org/10.1063/1.124070

    Article  ADS  Google Scholar 

  30. Sturman, B., Podivilov, E., Ringhofer, K., Shamonina, E., Kamenov, V., Nippolainen, E., Prokofiev, V., and Kamshilin, A., Theory of photorefractive vectorial wave coupling in cubic crystals, Phys. Rev. E., 1999, vol. 60, no. 3, p. 3332. https://doi.org/10.1103/PhysRevE.60.3332

    Article  ADS  Google Scholar 

  31. Romashko, R.V., Di Girolamo, S., Kulchin, Y.N., and Kamshilin, A.A., Photorefractive vectorial wave mixing in different geometries, J. Opt. Soc. Am. B, 2010, vol. 27, no. 2, pp. 311–317. https://doi.org/10.1364/JOSAB.27.000311

    Article  ADS  Google Scholar 

  32. Kamshilin, A., Raita, E., and Khomenko, A., Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections, J. Opt. Soc. Am. B, 1996, vol. 13, no. 11, pp. 2536—2543. https://doi.org/10.1364/JOSAB.13.002536

    Article  ADS  Google Scholar 

  33. Romashko, R., Kulchin, Y., and Kamshilin, A., Linear phase demodulation via reflection photorefractive holograms, OSA Trends in Optics and Photonics (TOPS), Photorefractive Effects, Materials and Devices, Washington, 2005, vol. 99, pp. 675–680. https://doi.org/10.1364/PEMD.2005.675

    Google Scholar 

  34. Di Girolamo, S., Kamshilin, A.A., Romashko, R.V., Kulchin, Yu.N., and Launay, J.-C., Fast adaptive interferometer on dynamic reflection hologram in CdTe:V, Opt. Express, 2007, vol. 15, no. 2, pp. 545—555. https://doi.org/10.1364/OE.15.000545

    Article  ADS  Google Scholar 

  35. Plesovskikh, A.M., Shandarov, S.M., Mart’yanov, A.G., Mandel’, A.E., Burimov, N.I., Shaganova, E.A., Kargin, Yu.F., Volkov, V.V., and Egorysheva, A.V., Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals, Quantum Electron., 2005, vol. 35, no. 2, p. 163. https://doi.org/10.1070/QE2005v035n02ABEH002864

    Article  ADS  Google Scholar 

  36. Mart’yanov, A., Shandarov, S., and Litvinov, R., Interaction of light waves on a reflecting holographic grating in cubic photorefractive crystals, Phys. Solid State, 2002, vol. 44, no. 6, pp. 1050–1054. https://doi.org/10.1134/1.1485006

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-12-00323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Romashko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashko, R.V., Bezruk, M.N. & Kulchin, Y.N. Orthogonal Two-Wave Vector Interaction in a Gyrotropic Photorefractive Crystal. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S96–S104 (2023). https://doi.org/10.3103/S1068335623130110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130110

Keywords:

Navigation