Skip to main content
Log in

Ferrielectric Liquid Crystal with a Subwavelength Helix Pitch As an Electro-Optic Medium for Phase Spatial Light Modulators

  • LIGHT MODULATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The possibility of using a ferrielectric liquid crystal as an electro-optic medium for a phase spatial light modulator has been investigated. The electro-optic characteristics of a ferrielectric liquid crystal are measured, and a numerical simulation of a 12-sector spiral phase plate based on this crystal is performed. It is found that, at a sub-kilohertz frequency of phase shift switching modulation by 2π, the investigated liquid-crystal ferrielectric is a lower voltage electro-optic medium for space–time light modulators in comparison with ferroelectric liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rubinsztein-Dunlop, H., Forbes A., et al., Roadmap on structured light, J. Opt., 2016, vol. 19, p. 013001. https://doi.org/10.1088/2040-8978/19/1/013001

  2. Forbes. A., Dudley. A., and McLaren. M., Creation and detection of optical modes with spatial light modulators, Adv. Opt. Photon., 2016, vol. 8, no. 2, pp. 200–227. https://doi.org/10.1364/AOP.8.000200

    Article  Google Scholar 

  3. https://holoeye.com/spatial-light-modulators.

  4. https://www.hamamatsu.com/eu/en/product/optical-components/lcos-slm/for-research-and-development/ lcos-slm/X-15213-01.html.

  5. Yin, K., Hsiang, E.L., Zou, J., Li, Y., Yang, Z., Yang, Q., Lai, P.C., Lin, C.L., and Wu, S.T., Light: Science & Applications, 2022, vol. 11, no. 1. https://doi.org/10.1038/s41377-021-00680-w

  6. Isomae, Y., Sugawara, N., Iwasaki, N., Honda, T., and Amari, K., Phase-only spatial light modulator having high reflectance, high-definition pixels and high photo-durability, Proc. SPIE, 2021, vol. 11788, p. 191. https://doi.org/10.1117/12.2595136

    Article  Google Scholar 

  7. Naumov, A.F., Loktev, M.Y., Guralnik, I.R., and Vdovin, G., Liquid-crystal adaptive lenses with modal control, Opt. Lett., 1998, vol. 23, pp. 992–994. https://doi.org/10.1364/OL.23.000992

    Article  ADS  Google Scholar 

  8. Vdovin, G.V., Guralnik, I.R., Kotova, S.P., Loktev M.Yu., and Naumov, A.F., Liquid-crystal lenses with a controlled focal length. I. Theory, Quantum Electronics, 1999, vol. 29, no. 3, p. 256. https://doi.org/10.1070/QE1999v029n03ABEH001463

    Article  ADS  Google Scholar 

  9. Vdovin, G.V., Guralnik, I.R., Kotova, S.P., Loktev M.Yu., and Naumov, A.F., Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments, Quantum Electron., 1999, vol. 29, no. 3, p. 261. https://doi.org/10.1070/QE1999v029n03ABEH001464

    Article  ADS  Google Scholar 

  10. Lin, Y.H., Wang, Y.J., and Reshetnyak, V., Liquid crystal lenses with tunable focal length, Liq. Cryst. Rev., 2017, vol. 5, no. 2, pp. 111–143. https://doi.org/10.1080/21680396.2018.1440256

    Article  Google Scholar 

  11. Algorri, J.F., Zografopoulos, D.C., Urruchi, V., and Sanchez-Pena, J.M., Recent Advances in Adaptive Liquid Crystal Lenses, Crystals, 2019, vol. 9, no. 5, p. 272. https://doi.org/10.3390/cryst9050272

    Article  Google Scholar 

  12. Kotova, S.P., Kvashnin, M.Y., Rakhmatulin, M.A., et al., Modal liquid crystal wavefront corrector, Opt. Express, 2002, vol. 10, no. 22, pp. 1258–1272. https://doi.org/10.1364/OE.10.001258

    Article  ADS  Google Scholar 

  13. Loktev, M., Vdovin, G., Klimov, N., and Kotova, S., Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material, Opt. Express, 2007, vol. 15, no. 6, pp. 2770–2778. https://doi.org/10.1364/OE.15.002770

    Article  ADS  Google Scholar 

  14. Kotova, S.P., Patlan V.V., and Samagin S.A., Tunable liquid-crystal focusing device. 1. Theory, Quantum Electron., 2011, vol. 41, p. 58. https://doi.org/10.1070/QE2011v041n01ABEH014406

    Article  ADS  Google Scholar 

  15. Kotova, S.P., Patlan V.V., and Samagin S.A., Tunable liquid-crystal focusing device. 2. Experiment, Quantum Electron., 2011, vol. 41, p. 65. https://doi.org/10.1070/QE2011v041n01ABEH014407

    Article  ADS  Google Scholar 

  16. Kotova, S.P., Mayorova, A.M., and Samagin, S.A., Tunable 4-channel LC focusing device: summarized results and additional functional capabilities, J. Opt., 2015, vol. 17, no. 5, p. 055602.  https://doi.org/10.1088/2040-8978/17/5/055602

  17. Kotova S.P., Mayorova A.M., and Samagin S.A., Light fields generated by LC focusing device in different operational regimes, Proc. SPIE, 2016, vol. 10176, p. 1017626.

  18. Kotova S.P., Mayorova A.M., and Samagin S.A., Ability of a four-channel liquid-crystal modulator to generate light fields with a complex intensity distribution, J. Opt. Technol., 2017, vol. 84, no. 5, pp. 323–330. https://doi.org/10.1364/JOT.84.000323

    Article  Google Scholar 

  19. Xianyu, H., Wu, S.T., and Lin, C.L., Dual frequency liquid crystals: a review, Liq. Cryst., 2009, vol. 36, no. 6–7, pp. 717–726. https://doi.org/10.1080/02678290902755598

  20. Peng, F., Chen, H., Tripathi, S., Twieg, R.J., and Wu, S.T., Fast-response infrared phase modulator based on polymer network liquid crystal, Opt. Mater. Express, 2015, vol. 5, pp. 265–273. https://doi.org/10.1364/OME.5.000265

    Article  ADS  Google Scholar 

  21. Li, Y., Yang, Z., Chen, R., Mo, L., Li, J., Hu, M., and Wu, S.T., Submillisecond-response polymer network liquid crystal phase modulators, Polymers, 2020, vol. 12, no. 12, p. 2862. https://doi.org/10.3390/polym12122862

    Article  Google Scholar 

  22. Fan, Y.H., Lin, Y.H., Ren, H., Gauza, S., and Wu, S.T., Fast-response and scattering-free polymer network liquid crystals for infrared light modulators, Appl. Phys. Lett., 2004, vol. 84, pp. 1233–1235. https://doi.org/10.1063/1.1649816

    Article  ADS  Google Scholar 

  23. Sun, J. and Wu, S.T., Recent advances in polymer network liquid crystal spatial light modulators, J. Polym. Sci., Part B: Polym. Phys., 2014, vol. 52, pp. 183–192. https://doi.org/10.1002/polb.23391

    Article  Google Scholar 

  24. Love, G.D., Kirby, A.K., and Ramsey, R.A., Sub-millisecond, high stroke phase modulation using polymer network liquid crystals, Opt. Express, 2010, vol. 18, no. 7, pp. 7384–7389. https://doi.org/10.1364/OE.18.007384

    Article  ADS  Google Scholar 

  25. Hyman R.M., Lorenz A., and Wilkinson T.D., Phase modulation using different orientations of a chiral nematic in liquid crystal over silicon devices, Liq. Cryst., 2016, vol. 43, no. 1, pp. 83–90. https://doi.org/10.1080/02678292.2015.1061146

    Article  Google Scholar 

  26. Oton, E., Netter, E., Nakano, T., D-Katayama, Y., and Inoue, F., Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation, Sci. Rep., 2017, vol. 7, no. 44575, p. 1. https://doi.org/10.1038/srep44575

    Article  Google Scholar 

  27. Beresnev, L.A., Chigrinov, V.G., Dergachev, D.I., Poshidaev, E.P., Fünfschilling, J., and Schadt, M., Deformed helix ferroelectric liquid crystal display: A new electrooptic mode in ferroelectric chiral smectic C liquid crystals, Liq. Cryst., 1989, vol. 5, no. 4, pp. 1171–1177. https://doi.org/10.1080/02678298908026421

    Article  Google Scholar 

  28. Pozhidaev, E.P., Kiselev, A.D., Srivastava, A.K., Chigrinov, V.G., Kwok, H.S., and Minchenko, M.V., Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch, Phys. Rev. E, 2013, vol. 87, p. 052502. https://doi.org/10.1103/PhysRevE.87.052502

  29. Pozhidaev, E.P., Torgova, S.I., Molkin, V.M., Minchenko, M.V., Vashchenko, V.V., Krivoshey, A.I., and Strigazzi, A., New chiral dopant possessing high twisting power, The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic application employing highly effective chiral components: Trifluoromethylalkyl diesters of p-terphenyldicarboxylic acid, Mol. Cryst. Liq. Cryst., 2009, vol. 509, no. 1, pp. 1042–1050. https://doi.org/10.1080/15421400903054667

    Article  Google Scholar 

  30. Mikhailenko, V., Krivoshey, A., Pozhidaev, E., Popova, E., Fedoryako, A., Gamzaeva, S., Barbashov, V., Srivastava, A.K., Kwok, H.S., and Vashchenko, V., The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic application employing highly effective chiral components: Trifluoromethylalkyl diesters of p-terphenyldicarboxylic acid, J. Mol. Liq., 2019, vol. 281, pp. 186–195. https://doi.org/10.1016/j.molliq.2019.02.047

    Article  Google Scholar 

  31. Kotova, S.P., Samagin, S.A., Pozhidaev, E.P., and Kiselev, A.D., Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals, Phys. Rev. E, 2015, vol. 92, no. 6, p. 062502. https://doi.org/10.1103/PhysRevE.92.062502

  32. Kotova, S.P., Pozhidaev, E.P., Samagin, S.A., Kesaev, V.V., Barbashov, V.A., and Torgova, S.I., Ferroelectric liquid crystal with sub-wavelength helix pitch as an electro-optical medium for high-speed phase spatial light modulators, Opt. Laser Technol., 2021, vol. 135, p. 106711. https://doi.org/10.1016/j.optlastec.2020.106711

  33. Goodby, J.W., Patel, J.S., and Chin, E., Ferroelectric, ferrielectric and antiferroelectric properties in the (R)- and (S)-1-methylalkyl 4′-(4″-n-alkoxybenzoyloxy)biphenyl-4-carboxylate liquid crystals, J. Mater. Chem., 1992, vol. 2, no. 2, pp. 197–207. https://doi.org/10.1039/JM9920200197

    Article  Google Scholar 

  34. Pozhidaev, E.P., Minchenko, M.V., Kuznetsov, A.V., Tkachenko, T.P., and Barbashov, V.A., Broad temperature range ferrielectric liquid crystal as a highly sensitive quadratic electro-optical material, Opt. Lett., 2022, vol. 47, no. 7, pp. 1598–1601. https://doi.org/10.1364/OL.450919

    Article  ADS  Google Scholar 

  35. Pozhidaev, E., Torgova, S., Minchenko, M., Yednak, C.A.R., Strigazzi, A., and Miraldi, E., Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch, Liq. Cryst., 2010, vol. 37, no. 8, pp. 1067–1081. https://doi.org/10.1080/02678292.2010.486482

    Article  Google Scholar 

  36. Pozhidaev, E.P., Srivastava, A.K., Kiselev, A.D., Chigrinov, V.G., Vashchenko, V.V., Krivoshey, A.I., Minchenko, M.V., and Kwok, H.S., Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals, Opt. Lett., 2014, vol. 39, no. 10, pp. 2900–2903.

    Article  ADS  Google Scholar 

  37. Emelyanenko, A.V., Pozhidaev, E.P., Molkin, V.E., and Shtykov, N.M., Antiferroelectric and ferrielectric liquid-crystal display: Electrically controlled birefringence color switch as a new mode, J. Soc. Inform. Display, 2008, vol. 16, no. 8, pp. 811–818. https://doi.org/10.1889/1.2966442

    Article  Google Scholar 

  38. Gerard, A. and Burch, J.M., Introduction to Matrix Methods in Optics, New York: Wiley, 1975.

    Google Scholar 

  39. Beijersbergen, M.W., Coerwinkel, R.P., Kristensen, M., and Woerdman, J.P., Helical-wavefront laser beams produced with a spiral phaseplate, Opt. Commun., 1994, vol. 112, no. 5–6, pp. 321–327. https://doi.org/10.1016/0030-4018(94)90638-6

  40. Ganic, D., Gan, X., Gu, M., Hain, M., Somalingam, S., Stankovic, S., and Tschudi, T., Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%, Opt. Lett., 2002, vol. 27, no. 15, pp. 1351–1353.

    Article  ADS  Google Scholar 

  41. Wang, Q., Sun, X.W., and Shum, P., Generating doughnut-shaped beams with large charge numbers by use of liquid-crystal spiral phase plates, Appl. Opt., 2004, vol. 43, no. 11, pp. 2292–2297. https://doi.org/10.1364/AO.43.002292

    Article  ADS  Google Scholar 

  42. Albero, J., Garcia-Martinez, P., Bennis, N., Oton, E., Cerrolaza, B., Moreno, I., and Davis, J.A., Liquid crystal devices for the reconfigurable generation of optical vortices, J. Lightwave Technol., 2012, vol. 30, p. 3055.

    Article  ADS  Google Scholar 

  43. Goodman, J.W., Introduction to Fourier Optics, Englewood: Roberts, 2005.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 20-02-00671, 20-02-00746 A, and 19-52-06005 MNTI_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kotova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozhidaev, E.P., Kotova, S.P. & Samagin, S.A. Ferrielectric Liquid Crystal with a Subwavelength Helix Pitch As an Electro-Optic Medium for Phase Spatial Light Modulators. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S85–S95 (2023). https://doi.org/10.3103/S1068335623130109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130109

Keywords:

Navigation