Skip to main content
Log in

VUV Lasing in Hydrogen and Fluorine in Diffuse Discharges Formed by Runaway Electrons

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The paper studies the parameters of stimulated VUV radiation generated by diffuse discharges formed in a strongly inhomogeneous electric field in mixtures of noble gases with addition of hydrogen and fluorine at pressures up to 10 atm. Efficient VUV lasing on molecular transitions of hydrogen (148–161 nm) and fluorine (157 nm) has been obtained. It is shown that the addition of helium and neon buffer gases increases the pulse duration and lasing energy of the H2 laser. Laser pulses with a duration of more than 10 ns and a radiation energy of 0.1 mJ were obtained. It has been found that, in mixtures of He with F2, a diffuse discharge is formed due to ionization waves. It is shown that the laser pulse at a wavelength of 157 nm has three maxima, which correspond to the first three half-cycles of the diffuse discharge current. It has been found that, depending on the composition and pressure of the mixture, the first or second lasing peak has the highest intensity. At a mixture pressure of 10 atm, the electrical efficiency of the F2 laser was 0.18%, which exceeds the efficiency of known lasers of this type pumped by volume discharges with preionization from an additional source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cefalas, A., Sarantopoulou, E., and Kollia, Z., Efficient removal of foxing from a medieval Ptolemaic map using a molecular fluorine laser at 157 nm, Appl. Phys. A, 2001, vol. 73, pp. 571—578. https://doi.org/10.1007/s003390100892

    Article  ADS  Google Scholar 

  2. Sarantopoulou, E., Kollia, Z., Kocevar, K., Musevic, I., Kobe, S., Drazic, G., Gogolides, E., Argitis, P., and Cefalas, A.C., The challenges of 157 nm nanolithography: Surface morphology of silicon-based copolymers, Mater. Sci. Eng. C, 2003, vol. 23, p. 995. https://doi.org/10.1016/j.msec.2003.09.072

    Article  Google Scholar 

  3. Takao, H., Okoshi, M., and Inoue, N., Jpn. J. Appl. Phys., 2003, vol. 42, p. L461. https://doi.org/10.1143/JJAP.42.L461

  4. Bazhulin, P.A., Knyazev, I.N., and Petrash, G.G., On the possibility of stimulated emission in the far ultraviolet, Sov. Phys. JETP, 1965, vol. 23, p. 649.

    ADS  Google Scholar 

  5. Ali, A.W. and Kolb, A.C., Hydrogen molecular vacuum ultraviolet laser theory, Appl. Phys. Lett., 1968, vol. 13, pp. 259—261. https://doi.org/10.1063/1.1652600

    Article  ADS  Google Scholar 

  6. Hodgson, R.T., Vacuum-ultraviolet laser action observed in the Lyman bands of molecular hydrogen, Phys. Rev. Lett., 1970, vol. 25, p. 494. https://doi.org/10.1103/PhysRevLett.25.494

    Article  ADS  Google Scholar 

  7. Waynat, R.W., Shipman, J.D. Jr., Elton, R.C., and Ali, A.W., Vacuum ultraviolet laser emission from molecular hydrogen, Appl. Phys. Lett., 1970, vol. 17, pp. 383—384. https://doi.org/10.1063/1.1653445

    Article  ADS  Google Scholar 

  8. Ali, A.W. and Kepple, P.C., H2 Lyman and Werner bands laser theory, Appl. Opt., 1972, vol. 11, pp. 2591—2596. https://doi.org/10.1364/AO.11.002591

    Article  ADS  Google Scholar 

  9. Tarasenko, V.F., Efficiency of a nitrogen UV laser pumped by a self-sustained discharge, Quantum Electron., 2001, vol. 31, no. 6, p. 489. https://doi.org/10.1070/QE2001v031n06ABEH001986

    Article  ADS  Google Scholar 

  10. Knyazev, I., Letokhov, V., and Movshev, V., Efficient and practical hydrogen vacuum ultraviolet laser, IEEE J. Quantum Electron., 1975, vol. 11, no. 10, pp. 805—817. https://doi.org/10.1109/JQE.1975.1068530

    Article  ADS  Google Scholar 

  11. Goldsmith, J.E.M. and Kniazev, I.N., A simple compact high-repetition-rate hydrogen vuv laser for scientific applications, J. Appl. Phys., 1977, vol. 48, pp. 4912—4921. https://doi.org/10.1063/1.323619

    Article  ADS  Google Scholar 

  12. Antonov, V.S., Knyazev, I.N., and Movshev, V.G., High-repetition-frequency operation of vacuum ultraviolet hydrogen laser, Sov J. Quantum Electron., 1975, vol. 5, p. 709. https://doi.org/10.1070/qe1975v005n06abeh011348

    Article  ADS  Google Scholar 

  13. Lozovskiĭ, P.M., Chernov, S.P., and Essel’bakh, P.B., High-power hydrogen laser emitting vacuum ultraviolet radiation at high pulse repetition frequency, Sov. J. Quantum Electron., 1977, vol. 7, p. 916. https://doi.org/10.1070/QE1977v007n07ABEH012732

    Article  ADS  Google Scholar 

  14. Ross, W., Florek, S., and Gatzke, J., Investigation of some elementary processes in a vacuum-UV hydrogen laser discharge, Opt. Commun., 1977, vol. 23, p. 29—32. https://doi.org/10.1016/0030-4018(77)90118-3

    Article  ADS  Google Scholar 

  15. Mathew, D., Bastiaens, H.M.J., Boller, K.-J., and Peters, P.J.M., Current filamentation in discharge-excited F2-based excimer laser gas mixtures, Appl. Phys. Lett., 2006, vol. 88, no. 10, p. 101502. https://doi.org/10.1063/1.2183363

  16. Ishchenko, V.N., Kochubeii, S.A., and Razhev, A.M., High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge, Sov. J. Quantum Electron., 1986, vol. 16, no. 5, p. 707. https://doi.org/10.1070/QE1986v016n05ABEH006868

    Article  ADS  Google Scholar 

  17. Atezhev, V.V., Vartapetov, S.K., Zhukov, A.N., Kurzanov, M.A., Obidin, A.Z., and Yamshchikov, V.A., Efficient excitation conditions for an electric-discharge F2 laser, Quantum Electron., 2003, vol. 33, no.8, p. 677. https://doi.org/10.1070/QE2003v033n08ABEH002477

    Article  ADS  Google Scholar 

  18. Yamada, K., Miyazaki, K., Hasama, T., and Sato, T., High-power discharge-pumped F2 molecular laser, Appl. Phys. Lett., 1989, vol. 54, pp. 597—599. https://doi.org/10.1063/1.100889

    Article  ADS  Google Scholar 

  19. Kakehata, M., Hashimoto, E., Kannari, F., and Obara, M., High specific output energy operation of a vacuum ultraviolet molecular fluorine laser excited at 66 MW/cm3 by an electric discharge, Appl. Phys. Lett., 1990, vol. 56, no. 26, pp. 2599—2601. https://doi.org/10.1063/1.102850

    Article  ADS  Google Scholar 

  20. Lankborst, F.T.J.L., Bastiaens, H.M.J., Peters, P.J.M., Witteman, W.J., High specific laser output energy at 157 nm from an electron beam pumped He/Ne/F2 gas mixture, Appl. Phys. Lett., 1993, vol. 63, no. 21, pp. 2869—2871. https://doi.org/10.1063/1.110309

    Article  ADS  Google Scholar 

  21. Tarasenko, V.F., Runaway electrons in diffuse gas discharges, Plasma Sources Sci. Technol., 2020, vol. 29, no. 3, p. 034001. https://doi.org/10.1088/1361-6595/ab5c57

  22. Vil’tovskii, P.O., Lomaev, M.I., Panchenko, A.N., Panchenko, N.A., Rybka, D.V., and Tarasenko, V.F., Lasing in the UV, IR and visible spectral ranges in a runaway-electron-preionised diffuse dischrage, Quantum Electron., 2013, vol. 43, no. 7, p. 605. https://doi.org/10.1070/QE2013v043n07ABEH014928

    Article  ADS  Google Scholar 

  23. Tarasenko, V.F., Panchenko, A.N., and Kozhevnikov, V.V., Efficient lasing in mixtures of helium and fluorine in diffuse discharges formed by runaway electrons, Quantum Electron, 2020, vol. 50, no. 10, p. 900. https://doi.org/10.1070/QEL17384

    Article  ADS  Google Scholar 

  24. Panchenko, A.N., Beloplotov, D.V., Kozhevnikov, V.V., Lomaev, M.I., Sorokin, D.A., and Tarasenko, V.F., Emission of xenon in the spectral range of 120–800 nm upon excitation by diffuse and spark discharges, Quantum Electron., 2021, vol. 51, no. 7, p. 649. https://doi.org/10.1070/QEL17548

    Article  ADS  Google Scholar 

  25. Panchenko, A.N., Tarasenko, V.F., Lomaev, M.I., Panchenko, N.A., and Suslov, A.I., Efficient N2 laser pumped by nanosecond diffuse discharge, Opt. Commun., 2019, vol. 430, p. 210—218. https://doi.org/10.1016/j.optcom.2018.08.014

    Article  ADS  Google Scholar 

  26. Le Pimpec, F., Milne, Ch.J., Hauri, Ch.P., and Ardana-Lamas, F., Quantum efficiency of technical metal photocathodes under laser irradiation of various wavelengths, Appl. Phys. A, 2013, vol. 112, p. 647—661. https://doi.org/10.1007/s00339-013-7600-z

    Article  ADS  Google Scholar 

  27. Henneken H., Cholze F.S., Krumrey M., and Ulm G. Quantum efficiencies of gold and copper photocathodes in the VUV and X-ray range, Metrologia, 2000, vol. 37, no. 5, p. 485. https://doi.org/10.1088/0026-1394/37/5/31

    Article  ADS  Google Scholar 

  28. Sozer, E.B., Jiang, C., Gundersen, M.A., and Umstattd, R.J., Quantum efficiency measurements of photocathode candidates for back-lighted thyratrons, IEEE Trans. Dielectr. Electr. Insul., 2009, vol. 16, no. 4, pp. 993—998. https://doi.org/10.1109/TDEI.2009.5211845

    Article  Google Scholar 

  29. Nassisi, V., Beloglazov, A., Giannico, E., Perrone, M.R., and Raint, A., Emission and emittance measurements of electron beams generated from Cu and diamond photocathodes, J. Appl. Phys., 1998, vol. 84, pp. 2268—2271. https://doi.org/10.1063/1.368293

    Article  ADS  Google Scholar 

  30. Tarasenko, V.F., Baksht, E.K., Burachenko, A.G., Lomaev, M.I., and Sorokin, D.A., Modes of generation of runaway electron beams in He, Ne, and at a pressure of 1–760 Torr, IEEE Trans. Plasma Sci., 2010, vol. 38, no. 10, pp. 2583—2587. https://doi.org/10.1109/TPS.2010.2041474

    Article  ADS  Google Scholar 

  31. Kim J.J., Baer G., and Dexter R.N., Excitation mechanisms of the e-beam-excited hydrogen laser, Phys. Rev. A, 1976, vol. 13, no. 3, p. 1115. https://doi.org/10.1103/PhysRevA.13.1115

    Article  ADS  Google Scholar 

  32. Lochte-Holtgreven, W., Plasma Diagnostics, Amsterdam: North-Holland, 1968.

    Google Scholar 

  33. Knyazev, I.N., Letokhov, V.S., and Movshev, V.G., On the collisional four-level H2 VUV laser, Opt. Commun., 1972, vol. 6, pp. 424—426. https://doi.org/10.1016/0030-4018(72)90173-3

    Article  ADS  Google Scholar 

  34. Moran, T.F. and Friedman, L., Neon—hydrogen ion—molecule reactions, J. Chem. Phys., 1963, vol. 39, pp. 2491—2500. https://doi.org/10.1063/1.1734052

    Article  ADS  Google Scholar 

  35. Shao, T., Tarasenko, V.F., Zhang, C., Burachenko, A.G., Rybka, D.V., Kostyrya, I.D., Lomaev, M.I., Baksht, E.K., and Yan, P., Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field, Rev. Sci. Instrum., 2013, vol. 84, p. 053506. https://doi.org/10.1063/1.4807154

  36. Vartapetov, S.K., Zhigalkin, A.A., Lapshin, K.E., Obidin, A.Z., Khomich, V.Yu., and Yamshchikov, V.A., Study of an electric-discharge molecular fluorine VUV laser, Quantum Electron., 2006, vol. 36, no. 5, p. 393. https://doi.org/10.1070/QE2006v036n05ABEH013237

    Article  ADS  Google Scholar 

  37. Panchenko, A.N. and Tarasenko, V.F., Efficient gas lasers pumped by double-discharge circuits with semiconductor opening switch, Progr. Quantum Electron., 2012, vol. 36, p. 143. https://doi.org/10.1016/j.pquantelec.2012.03.005

    Article  ADS  Google Scholar 

  38. Ohwa, M. and Obara, M., Theoretical evaluation of high-efficiency operation of discharge-pumped vacuum-ultraviolet F2 lasers, Appl. Phys. Lett., 1987, vol. 51, p. 958—960. https://doi.org/10.1063/1.98775

    Article  ADS  Google Scholar 

  39. Kitamura, T., Arita, Y., Maeda, K., Takasaki, M., Nakamura, K., Fujiwara, Y., and Horiguchi, S., Small-signal gain measurements in a discharge-pumped F2 laser, J. Appl. Phys., 1997, vol. 81, no. 6, p. 2523—2528. https://doi.org/10.1063/1.364302

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.A. Sorokin for his support of this work.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1026 dated November 15, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Panchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, A.N., Tarasenko, V.F. & Kozhevnikov, V.V. VUV Lasing in Hydrogen and Fluorine in Diffuse Discharges Formed by Runaway Electrons. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S1–S10 (2023). https://doi.org/10.3103/S1068335623130092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130092

Keywords:

Navigation