Skip to main content
Log in

Measurement of the Hot Zone Temperature Using 1f  Modulation Diode Laser Absorption Spectroscopy with Logarithmic Signal Conversion

  • LASER SPECTROSCOPY
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

New version of diode laser (DL) absorption spectroscopy (DLAS) for determining the hot zone temperature is developed. The method is based on the combination of slow scanning of the radiation frequency of a probe DL around the absorption line of a test molecule of the medium and fast radiation frequency modulation with an amplitude on the order of the absorption line width. The developed version of the wavelength-modulation (WM-DLAS) is based on the two-beam differential scheme, the logarithmic signal conversion, and the registration of absorption at the first harmonic of the modulation frequency. The two-beam differential registration scheme and the logarithmic conversion of absorption signals have made it possible to reduce substantially the nonselective absorption of probe radiation and registration noise determined by excessive noise of lasers. The application of the first harmonic has ensured a higher sensitivity of the proposed version of WM-DLAS. Using the technique developed in this study, we have measured the temperature of water vapor in atmospheric air in the range 700–1100 K. The results are compared with the data obtained using commercial thermocouples. The difference in temperatures measured by a standard thermocouple and its mean value determined using the technique developed here is 40 K for a temperature of 1000 K and 30 K for 800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Werle, P., A review of recent advances in semiconductor laser based gas monitors, Spectrochim. Acta Part A.: Molec. Spectrosc., 1998, vol. 54, pp. 197–236. https://doi.org/10.1016/S1386-1425(97)00227-8

    Article  ADS  Google Scholar 

  2. Song, K. and Jung, E.C., Recent developments in modulation spectroscopy for trace gas detection using tunable diode lasers, Appl. Spectrosc. Rev., 2003, vol. 38, pp. 395–432. https://doi.org/10.1081/ASR-120026329

    Article  ADS  Google Scholar 

  3. Lackner, M., Tunable diode laser absorption spectroscopy (TDLAS) in the process industries–A review, Rev. Chem. Eng., 2007, vol. 23, p. 65. https://doi.org/10.1515/REVCE.2007.23.2.65

    Article  Google Scholar 

  4. Hodgkinson, J. and Tatam, R.P., Optical gas sensing: A review, Meas. Sci. Technol., 2013, vol. 24, no. 1, p. 012004.  https://doi.org/10.1088/0957-0233/24/1/012004

  5. Wang, F., Jia, S., Wang, Y., and Tang, Z., Recent developments in modulation spectroscopy for methane detection based on tunable diode laser, Appl. Sci., 2019, vol. 9, p. 2816. https://doi.org/10.3390/app9142816

    Article  Google Scholar 

  6. Ponurovskii, Ya.Ya., New generation of gas-analytical systems, Analytika, 2019, vol. 9, p. 68.

    Google Scholar 

  7. Du, Z., Zhang, S., Li, J., Gao, N., and Tong, K., Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: A review, Appl. Sci., 2019, vol. 9, no. 2, p. 338. https://doi.org/10.3390/app9020338

    Article  Google Scholar 

  8. Fu, B., Zhang, C., Lyu, W., et al., Recent progress on laser absorption spectroscopy for determination of gaseous chemical species, Appl. Spectrosc. Rev., 2022, vol. 57, pp. 112–152. https://doi.org/10.1080/05704928.2020.1857258

    Article  ADS  Google Scholar 

  9. Allen, M.G., Diode laser absorption sensors for gas-dynamic and combustion flows, Meas. Sci. Technol., 1998, vol. 9, p. 545. https://doi.org/10.1088/0957-0233/9/4/001

    Article  ADS  Google Scholar 

  10. Bolshov, M.A., Kuritsyn, Yu.A., and Romanovskii, Yu.V., Tunable diode laser spectroscopy as a technique for combustion diagnostics, Spectrochim. Acta Part B: At. Spectrosc., 2015, vol. 106, pp. 45—66. https://doi.org/10.1016/j.sab.2015.01.010

    Article  ADS  Google Scholar 

  11. Goldenstein, C.S., Spearrin, R.M., Jeffries, J.B., and Hanson, R.K., Infrared laser-absorption sensing for combustion gases, Progr. Energy Combust. Sci., 2017, vol. 60, pp. 132–176. https://doi.org/10.1016/j.pecs.2016.12.002

    Article  Google Scholar 

  12. Liu, C. and Xu, L., Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review, Appl. Spectrosc. Rev., 2018, vol. 54, pp. 1–44. https://doi.org/10.1080/05704928.2018.1448854

    Article  ADS  Google Scholar 

  13. Liger, V.V., Mironenko, V.R., Kuritsin, Yu.A., and Bolshov, M.A., Diagnostics of hot zones by absorption spectroscopy method with diode lasers (review), Opt. Spectrosc., 2019, vol. 127, pp. 49–60. https://doi.org/10.1134/S0030400X19070166

    Article  ADS  Google Scholar 

  14. Wang, J.Y., Laser absorption methods for simultaneous determination of temperature and species concentrations through a cross section of a radiating flow, Appl. Opt., 1976, vol. 15, pp. 768–773. https://doi.org/10.1364/AO.15.000768

    Article  ADS  Google Scholar 

  15. Hanson, R.K. and Falcone, P.K., Temperature measurement technique for high-temperature gases using a tunable diode laser, Appl. Opt., 1978, vol. 17, pp. 2477–2480. https://doi.org/10.1364/AO.17.002477

    Article  ADS  Google Scholar 

  16. Baer, D.S., Nagali, V., Furlong, E.R., Hanson, R.K., and Newfield, M.E., Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers, AIAA J., 1996, vol. 34, p. 489. https://doi.org/10.2514/3.13094

    Article  ADS  Google Scholar 

  17. Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., Mironenko, V.R., Leonov, S.B., and Yarantsev, D A. Measurements of gas parameters in plasma-assisted supersonic combustion processes using diode laser spectroscopy, Quantum Electron., 2009, vol. 39, p. 869. https://doi.org/10.1070/QE2009v039n09ABEH014044

    Article  ADS  Google Scholar 

  18. Philippe, L.C. and Hanson, R.K., Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows, Appl. Opt., 1993, vol. 32, no. 30, pp. 6090–6103. https://doi.org/10.1364/AO.32.006090

    Article  ADS  Google Scholar 

  19. Silver, J.A. and Kane, D.J., Diode laser measurements of concentration and temperature in microgravity combustion, Meas. Sci. Technol., 1999, vol. 10, no. 10, p. 845.  https://doi.org/10.1088/0957-0233/10/10/303

    Article  ADS  Google Scholar 

  20. Duffin, K., McGettrick, A.J., Johnstone, W., Stewart, G., and Moodie, D.G., Tunable diode-laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line shapes, J. Light. Technol., 2007, vol. 25, no. 10, pp. 3114–3125. https://doi.org/10.1109/JLT.2007.904937

    Article  ADS  Google Scholar 

  21. Rieker, G.B., Jeffries, J.B., and Hanson, R.K., Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments, Appl. Opt., 2009, vol. 48, pp. 5546–5560. https://doi.org/10.1364/AO.48.005546

    Article  ADS  Google Scholar 

  22. Lan L.J., Ding Y.J., Peng Z.M., Du Y.J., and Liu Y.F., Calibration-free wavelength modulation for gas sensing in tunable diode laser absorption spectroscopy, Appl. Phys. B, 2014, vol. 117, pp. 1211–1219. https://doi.org/10.1007/s00340-014-5945-4

    Article  ADS  Google Scholar 

  23. Goldenstein, C.S., Strand, C.L., Schultz, I., Sun, K., and Jeffries, J.B., Hanson, R.K., Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes, Appl. Opt., 2014, vol. 53, pp. 356–367. https://doi.org/10.1364/AO.53.000356

    Article  ADS  Google Scholar 

  24. Liger, V.V., Kuritsyn, Yu.A., Krivtsun, V.M., Snegirev, E.P., and Kononov, A.N., Measurement of the absorption with a diode laser characterised by a detection threshold governed by the shot noise of its radiation, Quantum Electron., 1997, vol. 27, no. 4, p. 360. https://doi.org/10.1070/QE1997v027n04ABEH000949

    Article  ADS  Google Scholar 

  25. Liger, V., Zybin, A., Kuritsyn, Y., and Niemax, K., Diode-laser atomic-absorption spectrometry by the double-beam—double-modulation technique, Spectrochim. Acta Part B: At. Spectrosc., 1997, vol. 52, no. 8, pp. 1125–1138. https://doi.org/10.1016/S0584-8547(97)00029-3

    Article  ADS  Google Scholar 

  26. Zybin, A.V., Liger, V.V., and Kuritsyn, Yu.A., Dynamic range improvement and background correction in diode laser atomic absorption spectrometry, Spectrochim. Acta Part B: At. Spectrosc., 1999, vol. 54, pp. 613–619. https://doi.org/10.1016/S0584-8547(98)00230-4

    Article  ADS  Google Scholar 

  27. Wang, Y., Cai, H., Geng, J., and Fang, Z., Logarithmic conversion of absorption detection in wavelength modulation spectroscopy with a current-modulated diode laser, Appl. Opt., 2009, vol. 48, pp. 4068–4076. https://doi.org/10.1364/AO.48.004068

    Article  ADS  Google Scholar 

  28. Cong, M. and Sun, D., Detection of ammonia using logarithmic-transformed wavelength modulation spectrum, IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 381, p. 012132. https://doi.org/10.1088/1757-899X/381/1/012132

  29. Li, S. and Sun, L., Natural logarithm wavelength modulation spectroscopy, Chinese Opt. Lett., 2021, vol. 19, p. 031201. https://doi.org/10.1364/COL.19.031201

  30. Li, R., Li, F., Lin, X., and Yu, X., Linear calibration-free wavelength modulation spectroscopy, Microw. Opt. Technol. Lett., 2023, vol. 65, no. 5, pp. 1024–1030. https://doi.org/10.1002/mop.33063

    Article  Google Scholar 

  31. Liger, V., Mironenko, V., Kuritsyn, Yu., and Bolshov, M., Advanced fiber-coupled diode laser sensor for calibration-free 1f-WMS determination of an absorption line intensity, Sensors, 2020, vol. 20, no. 21, p. 6826. https://doi.org/10.3390/s20216286

    Article  ADS  Google Scholar 

  32. Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., and Mironenko V.R., Development of diode laser absorption spectroscopy method for determining temperature and concentration of molecules in remote object, Opt. Spectrosc., 2011, vol. 110, pp. 848–856. https://doi.org/10.1134/S0030400X1106004X

    Article  ADS  Google Scholar 

  33. Gordon, I.E., et al., The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 2017, vol. 203, pp. 3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038

    Article  ADS  Google Scholar 

  34. Rothman, L.S. et al., HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 2010, vol. 111, pp. 2139–2150. https://doi.org/10.1016/j.jqsrt.2010.05.001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bolshov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liger, V.V., Mironenko, V.R., Kuritsyn, Y.A. et al. Measurement of the Hot Zone Temperature Using 1f  Modulation Diode Laser Absorption Spectroscopy with Logarithmic Signal Conversion. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S66–S77 (2023). https://doi.org/10.3103/S1068335623130067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130067

Keywords:

Navigation