Skip to main content
Log in

Fluorination as a Possible Method of Increasing Critical Temperature of Cuprate HTSC

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A method for searching and synthesizing new HTSC with higher critical temperatures (Tc) is proposed. It is assumed that an increase in Tc in cuprate superconductors requires not only to increase the number of CuO2 planes in superconducting layers, but also to add fluorine anions to Ca or Y planes. Possible crystal structures and chemical formulas of compounds with higher critical temperatures are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Bednorz, J.G. and Müller, K.A., Possible high T c superconductivity in the Ba–La–Cu–O system, Z. Phys. B, 1986, vol. 64, pp. 189–193. https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  2. Drozdov, A.P., Eremets, M.I., Troyan, I.A., et al., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 2015, vol. 525, pp. 73–76. https://doi.org/10.1038/nature14964

    Article  ADS  Google Scholar 

  3. Eremets, M.I. and Drozdov, A.P., High-temperature conventional superconductivity, Phys.-Usp., 2016, vol. 59, no. 11, p. 1154. https://doi.org/10.3367/UFNr.2016.09.037921

    Article  Google Scholar 

  4. Drozdov, A.P., Kong, P.P., Minkov, V.S., et al., Superconductivity at 250 K in lanthanum hydride under high pressures, Nature, 2019, vol. 569, pp. 528–531. https://doi.org/10.1038/s41586-019-1201-8

    Article  ADS  Google Scholar 

  5. Ashcroft, N.W., Hydrogen dominant metallic alloys: High temperature superconductors?, Phys. Rev. Lett., 2004, vol. 92, p. 187002. https://doi.org/10.1103/PhysRevLett.92.187002

  6. Pervakov, K.S., Kulikova, L.F., Tsvetkov, A.Yu., and Vlasenko, V.A., Novel iron-based superconductor Ca0.5Sm0.5FeAsF, Bull. Lebedev Phys. Inst., 2022, vol. 49, pp. 242–246. https://doi.org/10.3103/S106833562208005X

    Article  ADS  Google Scholar 

  7. McMillan, M.L., Transition temperature of strong-coupled superconductors, Phys. Rev., 1968, vol. 167, p. 331. https://doi.org/10.1103/PhysRev.167.331

    Article  ADS  Google Scholar 

  8. Gor’kov, L.P. and Eliashberg, G.M., Extension of the equations of the Ginzburg—Landau theory for nonstationary problems to the case of alloys with paramagnetic impurities, Zh. Eksp. Teor. Fiz., 1968, vol. 54.

    Google Scholar 

  9. Ginzburg, V.L. and Kirzhnits, D.A., High-Temperature Superconductivity, New York: Springer, 1982.

    Book  Google Scholar 

  10. Dagotto, E., Correlated electrons in high-temperature superconductors, Rev. Mod. Phys., 1994, vol. 66, p. 763. https://doi.org/10.1103/RevModPhys.66.763

    Article  ADS  Google Scholar 

  11. Lee, P.L., Nagaosa, N., and Wen, X.G., Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys., 2006, vol. 78, p. 17. https://doi.org/10.1103/RevModPhys.78.17

    Article  ADS  Google Scholar 

  12. Scott, B.A., Suard, E.Y., Tsuei, C.C., Mitzi, D.B., McGuire, T.R., Chen, B.-H., and Walkr, D., Layer dependence of the superconducting transition temperature of HgBa2Can – 1CunO2n + 2 + δ, Phys. C, 1994, vol. 230, p. 239. https://doi.org/10.1016/0921-4534(94)90835-4

    Article  ADS  Google Scholar 

  13. Tanabe, K., Adachi, S., Moriwaki, Y., Nakanishi, K., Sugano, T., Tamura, T., Tatsuki, T., Tokiwa-Yamamoto, A., Tsukamoto, A., and Wu, X.-J., in Abstracts of Papers, Proc. of Int. Workshop on Superconductivity, Hawaii, USA, 1997, pp. 11–14.

  14. Ginzburg, V.L., Landau, L.D., et al., J. Exp. Theor. Phys., 1950, vol. 20, p. 1064.

    Google Scholar 

  15. Lykov, A.N., Boundary conditions in Ginsburg–Landau theory and critical temperature of high-T c superconductors, Phys. Lett. A, 2008, vol. 372, pp. 4747–4749. Critical temperature of high-T c superconductors and boundary conditions in Ginsburg–Landau theory, Int. J. Mod. Phys. B, 2009, vol. 23, pp. 4269–4276. https://doi.org/10.1142/S0217979209063420https://doi.org/10.1016/j.physleta.2008.04.064

  16. Bozovich, L., Logvenov, G., Verhoeven, M.A.J., Caputo, P., Goldobinand, E., and Geball, T.H., No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor, Nature, 2003, vol. 422, pp. 873–875. https://doi.org/10.1038/nature01544

    Article  ADS  Google Scholar 

  17. Bednorz, J.G. and Müller, K.A., Perovskite-type oxides—The new approach to high-T c superconductivity, Rev. Mod. Phys., 1988, vol. 60, p. 585. https://doi.org/10.1103/RevModPhys.60.585

    Article  ADS  Google Scholar 

  18. Simonin, J., Surface term in the superconductive Ginzburg–Landau free energy: Application to thin films, Phys. Rev. B, 1986, vol. 33, p. 7830. https://doi.org/10.1103/PhysRevB.33.7830

    Article  ADS  Google Scholar 

  19. Lykov, A.N., On the possibility of the phonon mechanism of superconductivity in cuprate HTSC, Fiz. Tverdogo Tela, 2022, vol. 64, no. 11, pp. 1631–1637. https://doi.org/10.21883/FTT.2022.11.53313.276

    Article  Google Scholar 

  20. De Gennes, P.G., Superconductivity of Metals and Alloys, CRC Press, 2018.

    Book  MATH  Google Scholar 

  21. Capponi, J.J., Chaillout, C., and Hemat, A.W., et al., Structure of the 100 K superconductor Ba2YCu3O7 between (5–300) K by neutron powder diffraction, Europhys. Lett., 1987, vol. 3, no. 12, p. 1301. https://doi.org/10.1209/0295-5075/3/12/009

    Article  ADS  Google Scholar 

  22. Shveikin, G.P., Gubanov, V.A., Fotiev, A.A., Bazuev, G.V., and Evdokimov, A.A., Elektronnaya struktura i fiziko-khimicheskie svoistva vysokotemperaturnykh sverkhprovodnikov (Electronic Structure and Physicochemical Properties of High-Temperature Superconductors), Moscow: Nauka, 1990.

    Google Scholar 

  23. Ovshinsky, S.R., Young, R.T., Allred, D.D., et al., Phys. Rev. Lett., 1987, vol. 58, p. 2579.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lykov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykov, A.N. Fluorination as a Possible Method of Increasing Critical Temperature of Cuprate HTSC. Bull. Lebedev Phys. Inst. 50, 218–223 (2023). https://doi.org/10.3103/S1068335623060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623060076

Keywords:

Navigation