Skip to main content
Log in

Measurements of Rate Constants of Energy Transfer Processes in Ar/He Plasma of Pulse-Periodic Discharge

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

The rate constants of the Ar 2p6, 2p7, 2p8, and 2p9 state quenching during collisions with helium in Ar/He plasma were obtained for the first time at a gas temperature in the discharge plasma of ~410 K. Ar/He plasma is an active medium convenient for studying optically pumped lasers based on metastable atoms of heavy inert gases. Previous models did not contain the 2p6 and 2p7 levels, but they should be taken into account in double pumping schemes. Experiments show that these levels are actively populated at pressures above 100 Torr. The rate constants are determined by simulating the time dependences of the 2p6, 2p7, 2p8, and 2p9 concentrations obtained experimentally by pumping the 1s5 → 2p7 and 1s5 → 2ps transition using radiation of a pulsed tunable Ti:Sa laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Han, J. and Heaven, M.C., Gain and lasing of optically pumped metastable rare gas atoms, Opt. Lett., 2012, vol. 37, no. 11, pp. 2157–2159. https://doi.org/10.1364/OL.37.002157

    Article  ADS  Google Scholar 

  2. Sanderson, C.R., Ballmann, C.W., Han, J., Clark, A.B., Hokr, B.H., Xu, K.G., and Heaven, M.C., Demonstration of a quasi-CW diode-pumped metastable xenon laser, Opt. Express, 2019, vol. 27, no. 24, pp. 36011–36021. https://doi.org/10.1364/OE.27.036011

    Article  ADS  Google Scholar 

  3. Sun, P., Zuo, D., Mikheyev, P.A., Han, J., and Heaven, M.C., Time-dependent simulations of a CW pumped, pulsed DC discharge Ar metastable laser system, Opt. Express, 2019, vol. 27, no. 16, pp. 22289–22301. https://doi.org/10.1364/OE.27.022289

    Article  ADS  Google Scholar 

  4. Han, J. and Heaven, M.C., Kinetics of optically pumped Ar metastables, Opt. Lett., 2014, vol. 39, no. 22, pp. 6541–6544. https://doi.org/10.1364/OL.39.006541

    Article  ADS  Google Scholar 

  5. Mikheyev, P.A., Han, J., Clark, A., Sanderson, C., and Heaven, M.C., Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge, J. Phys. D: Appl. Phys., 2017, vol. 50, no. 48, p. 485203. https://doi.org/10.1088/1361-6463/aa91bf

  6. Eshel, B. and Perram, G.P., Five-level argon-helium discharge model for characterization of a diode-pumped rare-gas laser, J. Opt. Soc. Am. B, 2018, vol. 35, no. 1, pp. 164–173. https://doi.org/10.1364/JOSAB.35.000164

    Article  ADS  Google Scholar 

  7. Wang, R., Yang, Z., Li, K., and Wang, H., and Xu, X., Experiment and modeling of the pulsed lasing in a diode-pumped argon metastable laser, J. Appl. Phys., 2022, vol. 131, no. 2, p. 023104. https://doi.org/10.1063/5.0079512

  8. Sun, P., Zuo, D., Wang, X., Han, J., and Heaven, M.C., Investigation of dual-wavelength pump schemes for optically pumped rare gas lasers, Opt. Express, 2020, vol. 28, no. 10, pp. 14580–14589. https://doi.org/10.1364/OE.392810

    Article  ADS  Google Scholar 

  9. Gao, J., Sun, P., Wang, X., and Zuo, D., Modeling of a dual-wavelength pumped metastable argon laser, Laser Phys. Lett., 2017, vol. 14, no. 3, p. 035001. https://doi.org/10.1088/1612-202X/aa5b10

  10. Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database

  11. Yang, Z., Yu, G., Wang, H., Lu, Q., and Xu, X., Modeling of diode pumped metastable rare gas lasers, Opt. Express, 2015, vol. 23, no. 11, pp. 13823–13832. https://doi.org/10.1364/OE.23.013823

    Article  ADS  Google Scholar 

  12. Leiweke, R.J. and Ganguly, B.N., Diode laser spectroscopic measurements of gas temperature in a pulsed dielectric barrier discharge using collisional broadening and shift of 1s 3−2p 2 and 1s 5−2p 7 argon transitions, J. Appl. Phys., 2013, vol. 113, no. 14, p. 143302. https://doi.org/10.1063/1.4800556

  13. Pershin, A.A., Ghildina, A.R., Mebel, A.M., Azyazov, V.N., Mikheyev, P.A., and Heaven, M.C., Computational investigation of energy transfer and line broadening for Ar* + He collisions, J. Chem. Phys., 2019, vol. 151, no. 22, p. 224306. https://doi.org/10.1063/1.5133043

  14. Nguyen, T.D. and Sadeghi, N., Rate coefficients for collisional population transfer between 3p 5 4p argon levels at 300 K, Phys. Rev. A, 1978, vol. 18, no. 4, p. 1388. https://doi.org/10.1103/PhysRevA.18.1388

    Article  ADS  Google Scholar 

  15. Chang, R.S.F. and Setser, D.W., Radiative lifetimes and twobody deactivation rate constants for Ar(3p 5, 4p), J. Chem. Phys., 1978, vol. 69, no. 9, p. 1. https://doi.org/10.1063/1.437126

    Article  ADS  Google Scholar 

  16. Sadeghi, N., Setser, D.W., Francis, A., Czarnetzki, U., and Döbele, H.F., Quenching rate constants for reactions of Ar(4p′[1/2], 4p[1/2], 4p[3/2]2, and 4p[5/2]2) atoms with 22 reagent gases, J. Chem. Phys., 2001, vol. 115, no. 7, pp. 3144–3154. https://doi.org/10.1063/1.1388037x

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Torbin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuramshin, R.A., Torbin, A.P., Svistun, M.I. et al. Measurements of Rate Constants of Energy Transfer Processes in Ar/He Plasma of Pulse-Periodic Discharge. Bull. Lebedev Phys. Inst. 50, 207–213 (2023). https://doi.org/10.3103/S1068335623060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623060064

Keywords:

Navigation