Skip to main content
Log in

Comparison of Mode Locking Regimes Based on Nonlinear Rotation of the Polarization Plane in Erbium Fiber-Optic Lasers with Dumbbell-Type and Annular Cavity Designs

  • CONTROL OF LASER RADIATION PARAMETERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The stable generation regimes of both single ultrashort pulses and pulse packages in the spectral range of 1540–1600 nm are demonstrated for two cavity designs of fiber-optic lasers: dumbbell-type and annular. In both designs the mode locking regime is provided by the nonlinear rotation of the polarization plane. It is demonstrated that using the dumbbell-type cavity design with circulator is more advantageous in erbium fiber-optic laser for obtaining the single-pulse generation compared against the classical annular design constructed on analogous elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Pivtsov, V.S., Nyushkov, V.N., Korel’, I.I., Kolyada, N.A., Farnosov, S.A., and Denisov, V.I., Kvantovaya Elektron., 2014, vol. 44, no. 6, p. 507.

    Article  Google Scholar 

  2. Sardesai, H.P., Chang, C.C., Weiner, A.M., J. Lightwave Technol., 1998, vol. 16, no. 11, p. 1953.

    Article  ADS  Google Scholar 

  3. Nishizawa, N., Chen, Y., Hsiung, P., Ippen, E.P., and Fujimoto, J.G., Opt. Lett., vol. 29, no. 24, p. 2846.

  4. Potma, E.O., Jones, D.J., Cheng, J.X., Xie, X.S., and Ye, J., Opt. Lett., 2002, vol. 27, no. 13, p. 1168.

    Article  ADS  Google Scholar 

  5. Obata, K., Caballero-Lucas, F., and Sugioka, K.J., Laser Micro Nanoeng., 2021, vol. 16, no. 1, p. 19.

    Google Scholar 

  6. Yamashita, S., Yoshida, T., Set, S.Y., Polynkin, P., and Peyghambarianm, N., in Fiber Lasers IV: Technology, Systems, and Applications, Int. Soc. Opt. Photon., 2007, vol. 6453, p. 64531Y.

  7. Zverev, A.D., Kamynin, V.A., Filatova, S.A., Voronin, V.G., et al., Optik, 2022, vol. 249, p. 168218.

  8. Matsas, V.J., Newson, T.P., Richardson, D.J., and Payne, D.N., Electron. Lett., 1992, vol. 28, no. 15, p. 1391.

    Article  ADS  Google Scholar 

  9. Duling, I.N., Opt. Lett., 1991, vol. 16, no. 8, p. 539.

    Article  ADS  Google Scholar 

  10. Sotor, J., Sobon, G., Tarka, J., Pasternak, I., Krajewska, A., Strupinski, W., and Abramski, K.M., Opt. Express, 2014, vol. 22, no. 5, p. 5536.

    Article  ADS  Google Scholar 

  11. Yin, K., Zhang, B., Li, L., Jiang, T., Zhou, X., and Hou, J., Photon. Res., 2015, vol. 3, no. 3, p. 72.

    Article  Google Scholar 

  12. Liu, H., Zheng, X.W., Liu, M., Zhao, N., Luo, A.P., Luo, Z.C., and Wen, S.C., Opt. Express, 2014, vol. 22, no. 6, p. 6868.

    Article  ADS  Google Scholar 

  13. Filatova, S.A., Kamynin, V.A., Zhluktova, I.V., et al., Kvantovaya Elektron., 2019, vol. 49, no. 12, p. 1108.

    Article  Google Scholar 

  14. Kivistö, S. and Okhotnikov, O.G., IEEE Photon. Technol. Lett., 2011, vol. 23, no. 8, p. 477.

    Article  ADS  Google Scholar 

  15. Cuadrado-Laborde, C., Diez, A., Delgado-Pinar, M., Cruz, J.L., and Andrés, M.V., Opt. Lett., 2009, vol. 34, no. 7, p. 1111.

    Article  ADS  Google Scholar 

  16. Li, D., Xue, H., Wang, Y., et al. Opt. Lett., 2018, vol. 43, no. 15, p. 3497.

    Article  ADS  Google Scholar 

  17. Wang, Y., Set, S.Y., and Yamashita, S., APL Photon., 2016, vol. 1, no. 7, p. 071303.

  18. Schweyer, S., Kienberger, R., Eder, B., Putzer, P., Kölnberger, A., and Lemke, N., in 2014 European Frequency and Time Forum (EFTF), IEEE, 2014, p. 189.

  19. Kolyada, N.A., Nyushkov, V.N., Ivanenko, A.V., Kobtsev, S.M., Harper, P., Turitsyn, S.K., and Pivtsov, V.S., Kvantovaya Elektron., 2013, vol. 43, no. 2, p. 95.

    Article  Google Scholar 

  20. Tang, M., Wang, H., Becheker, R., Oudar, J.L., Gaponov, D., Godin, T., Hideur, A., Opt. Lett., 2015, vol. 40, no. 7, p. 1414.

    Article  ADS  Google Scholar 

  21. Zhang, L., El-Damak, A.R., Feng, Y., Gu, X., Opt. Express, 2013, vol. 21, no. 10, p. 12014.

    Article  ADS  Google Scholar 

  22. Filatova, S.A., Kamynin, V.A., Arutyunyan, N.R., et al., J. Opt. Soc. Am. B, 2018, vol. 35, no. 12, p. 3122.

    Article  ADS  Google Scholar 

  23. Dou, Z., Zhang, B., Cai, J., and Hou, J., in 2017 16th International Conference on Optical Communications and Networks (ICOCN), IEEE, 2017, pp. 1–3.

  24. Wang, X.D., Liang, Q.M., Luo, A.P., et al., Opt. Eng., 2019, vol. 58, no. 5, p. 056113.

  25. Dou, Z.Y., Zhang, B., Cai, J.H., and Hou, J. Chinese Phys. B, 2020, vol. 29, no. 9, p. 094201.

  26. Zverev, A.D., Kamynin, V.A., Trikshev, A.I., et al., Kvantovaya Elektron., 2021, vol. 51, no. 6, p. 518.

    Article  Google Scholar 

  27. Kane, M.G., Glesk, I., Sokoloff, J.P., and Prucnal, P.R., Appl. Opt., 1994, vol. 33, no. 29, p. 6833.

    Article  ADS  Google Scholar 

  28. Lazaridis, P., Debarge, G., and Gallion, P., Opt. Lett., 1995, vol. 20, no. 16, p. 1680.

    Article  ADS  Google Scholar 

  29. Yin, K., Zhang, B., Li, L., Jiang, T., Zhou, X., and Hou, J., Photon. Res., 2015, vol. 3, no. 3, p. 72.

    Article  Google Scholar 

  30. Lazaridis, P., Debarge, G., and Gallion, P., Opt. Lett., 1995, vol. 20, no. 10, p. 1160.

    Article  ADS  Google Scholar 

  31. Ge, Y., Guo, Q., Shi, J., Chen, X., Bai, Y., Luo, J., Jin, X., Ge, Y., Li, L., Tang, D., Shen, D., and Zhao, L., Microwave Opt. Technol. Lett., 2016, vol. 58, no. 1, p. 242.

    Article  Google Scholar 

  32. Lin, Y.H. and Lin, G.R., Laser Phys. Lett., 2013, vol. 10, no. 4, p. 045109.

Download references

Funding

This work is carried out on the basis of the World-Level Research Center Fotonika under financial support of the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Zverev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, A.D., Kamynin, V.A., Tsvetskov, V.B. et al. Comparison of Mode Locking Regimes Based on Nonlinear Rotation of the Polarization Plane in Erbium Fiber-Optic Lasers with Dumbbell-Type and Annular Cavity Designs. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S35–S42 (2022). https://doi.org/10.3103/S1068335622130164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130164

Keywords:

Navigation