Skip to main content
Log in

Radiation Divergence of Microsecond Rhodamine 6G Solution Lasers and Solid-State Perylene-Activated Nanocomposite Laser

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The radiation divergences of a microsecond laser on ethanol solution of rhodamine 6G and perylene-activated solid-state laser on nanoporous glass–polymere (NPGP) composite are compared, depending on the specific energy of pumping radiation. It is established that the main reasons of large radiation divergence of the NPGP nanocomposite laser are the light scattering of the pumping radiation and laser radiation by the heterogeneous medium of the composite and the thermal self-action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Erceg, A., de Jong, E.M., van de Kerkhof, P.C., and Seyger, M.M., J. Am. Acad. Dermatol., 2013, vol. 69, p. 609.

    Article  Google Scholar 

  2. Platonova, D.V., Zamyatina, V.A., Dymov, A.M., Kovalenko, A.A., Vinarov, A.Z., and Minaev V.P., Urologiya, 2015, no. 6, p. 116.

  3. Stranadko, E.F., Armichev, A.V., and Geinits, A.V., Lazernaya Med., 2011, vol. 15, p. 63.

    Google Scholar 

  4. Drake, J.M., Tam, E.M., and Morse, R.I., IEEE J. Quantum Electron., 1972, vol. 8, p. 92.

    Article  ADS  Google Scholar 

  5. Rubinov, A.N. and Smol’skaya, T.I., Kvantovaya elektronika i lazernaya spektroskopiya (Quantum Electronics and Laser Spectroscopy), Minsk, 1971, p. 33.

    Google Scholar 

  6. Belokon’, M.V., Rubinov, A.N., and Strizhnev, V.S., J. Appl. Spectrosc., 1973, vol. 19, p. 852.

    Article  ADS  Google Scholar 

  7. Levin, M.B., Opt. Mekh. Prom., 1989, no. 5, p. 54.

  8. Ewanizky, T.F., Appl. Phys. Lett., 1974, vol. 25, p. 295.

    Article  ADS  Google Scholar 

  9. Barikhin, B.A., Borovkov, V.V., Fedosimov, A.I., and Yakovlev, V.I., J. Appl. Spectrosc., 1979, vol. 31, p. 975.

    Article  ADS  Google Scholar 

  10. Gavrilov, O.D., Gratsianov, K.V., Eremenko, A.S., Malinin, B.G., et al., Tezisy Tret’ei Vsesoyuznoi konferentsii “Lazery na osnove slozhnykh organicheskikh soedinenii i ikh primenenie” (Abstracts of the Third All-Union Conference “Lasers Based on Complex Organic Compounds and Their Applications”), Minsk, 1980, p. 202.

  11. Alekseev, V.A., Zhiltsov, V.I., Konstantinov, B.A., Nikiforov, V.G., et al., J. Appl. Spectrosc., 1984, vol. 41, p. 912.

    Article  Google Scholar 

  12. Barikhin, B.A., Barkovskii, K.P., Gerasimov, V.B., Dudarevich, A.L., et al., Quantum Electron., 1985, vol. 15, p. 1139.

    ADS  Google Scholar 

  13. Mathien, P., Belanger, P.A., Appl. Opt., 1980, vol. 19, p. 2262.

    Article  ADS  Google Scholar 

  14. Artem’ev, N.M., Batishche, S.A., Bortkevich, A.V., Eremenko, A.S., et al., J. Appl. Spectrosc., 1987, vol. 47, p. 1104.

    Article  ADS  Google Scholar 

  15. Aldeg, G.R., Dolotov, S.M., Koldunov, M.F., and Kravchenko, Ya.V., Kvantovaya Elektron., 2000, vol. 30, p. 945.

    Google Scholar 

  16. Aldeg, G.R., Dolotov, S.M., Koldunov, M.F., and Kravchenko, Ya.V., Kvantovaya Elektron., 2000, vol. 30, p. 1055.

    Article  Google Scholar 

  17. Kopylova, T.N., Maier, G.V., Solodova, T.V., Tel’minov E.N., et al., Kvantovaya Elektron., 2008, vol. 38, p. 109.

    Article  Google Scholar 

  18. Costela, A., Garcia-Moreno, I., Gomez, C., Garcia, O., and Sastre, R., Appl. Phys., 2004, vol. 78, p. 629.

    Article  Google Scholar 

  19. Nikolaev, S.V., Pozhar, V.V., and Dzyubenko, M.I., Kvantovaya Elektron., 2006, vol. 36, p. 758.

    Article  Google Scholar 

  20. Tarkovskii, V.V., Kurstak, V.Yu., Anufrik, S.S., Koldunov, M.F., et al., Vestn. Grodn. Gos. Univ., Ser. 2, 2008, no. 3, p. 121.

  21. Tarkovskii, V.V., Kurstak, V.Yu., and Anufrik, S.S., Kvantovaya Elektron., 2003, vol. 33, p. 869.

    Article  Google Scholar 

  22. Dzyubenko, M.I., Naumenko, I.G., Pelipenko, V.P., and Soldatenko, S.E., Pis’ma Zh. Tekh. Fiz., 1973, vol. 18, p. 43.

    Google Scholar 

  23. Dzyubenko, M.I., Naumenko, I.G., and Pelipenko, V.P., Kvantovaya Elektron. (Kiev), 1987, vol. 32, p. 13.

    ADS  Google Scholar 

  24. Sukhorukov, A.P., Phys. Usp., 1970, vol. 13, no. 3, p. 410.

    Article  ADS  Google Scholar 

  25. Akhmanov, S.A., Sukhorukov, A.P., and Khokhlov, R.V., Phys. Usp., 1968, vol. 10, no. 5, p. 609.

    Article  ADS  Google Scholar 

  26. Lugovoi, V.N. and Prokhorov, A.M., Phys. Usp., 1973, vol. 111, no. 2, p. 203.

    Article  Google Scholar 

  27. Gibbs, H., Optical Bistability: Controlling Light with Light, Amsterdam: Elsevier, 1985.

    Google Scholar 

  28. Voropai, E.S., Gulis, I.M., Mogil’nyi, V.V., Samtsov, M.P., and Tolstik, A.L., Vybranyja navukovyja pracy Bielaruskaha dziaržaŭnaha univiersiteta, 2001, no. 4, p. 182.

  29. Batishche, S.A., Kuz’muk, A.A., Malevich, N.A., and Mostovnikov, V.A., J. Appl. Spectrosc., 1989, vol. 47, p. 983.

    Google Scholar 

  30. Naumovich, S.A., Berlov, G.A., and Batishche, S.A., Sovrem. Stomatol., 1997, no. 1, p. 15.

  31. Batishche, S.A., Mostovnikov, V.A., and Tarkovsky, V.V., Viesci ANB. Sier. Fiz.-Mat., 1995, no. 2, p. 84.

  32. Lokshin, G.R., Difraktsiya. Prostranstvennaya fil’tratsiya: uchebnoe posobie po kursu Obshchaya fizika (Diffraction. Spatial Filtering: Textbook for the Course of General Physics), Moscow: Mosk. Fiz.-Tekh. Inst., 2016.

  33. Kuz’min, A.A., Khazanov, E.A., and Shaikin, A.A., Kvantovaya Elektron., 2021, vol. 51, p. 142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tarkovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkovskii, V.V., Anufrik, S.S., Romashkevich, A.O. et al. Radiation Divergence of Microsecond Rhodamine 6G Solution Lasers and Solid-State Perylene-Activated Nanocomposite Laser. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S21–S29 (2022). https://doi.org/10.3103/S1068335622130127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130127

Keywords:

Navigation