Skip to main content
Log in

Nonlinear Noise Statistics in a High-Speed Optical Communication Line without Dispersion Compensation

  • FIBER-OPTIC COMMUNICATION LINES, FIBER SENSORS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

The communication line without compensation of dispersion is considered. It is shown analytically and numerically that the field power in the fiber on almost the entire length of the communication line is given by the \(\chi _{2}^{2}\) distribution. Using the 8-PSK format as an example, we have obtained the dependences of the phase noise dispersion in the chirp parameter of initial pulses. It is found that the accumulated phase shift has the normal distribution with a dispersion decreasing upon an increase in the chirp of the initial Gaussian pulses. We propose an adequate linear estimate of the accumulated nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Yu, J. and Zhang, J., Digital Commun. Networks, 2016, vol. 2, p. 65.

    Google Scholar 

  2. Li, X., Chen, X., Goldfarb, G., Mateo, E., Kim, I., Yaman, F., and Li, G., Opt. Express, 2008, vol. 16, p. 880.

    Article  ADS  Google Scholar 

  3. Kumar, S., J. Opt., 2021, vol. 23, p. 123502.

  4. Karanov, B., Chagnon, M., Thouin, F., Eriksson, T.A., Bulow, H., Lavery, D., Bayvel, P., and Schmalen, L., J. Lightwave Technol., 2018, vol. 36, p. 4843.

    Article  ADS  Google Scholar 

  5. Skidkin, A.S., Sidel’nikov, O.S., and Fedoruk, M.P., Quantum Electron., 2018, vol. 48, p. 1160.

    Article  ADS  Google Scholar 

  6. Fan, Q., Zhou, G., Gui, T., Lu, C., and Lau, A.P.T., Nat. Commun., 2020, vol. 11, p.3694.

    Article  ADS  Google Scholar 

  7. Shapiro, E.G. and Shapiro, D.A., Quantum Electron., 2020, vol. 50, p. 184.

    Article  ADS  Google Scholar 

  8. Shapiro, E.G. and Shapiro, D.A., Quantum Electron., 2021, vol. 51, p. 635.

    Article  ADS  Google Scholar 

  9. Johnson, N. and Lion, F., Statistika v planirovanii eksperimenta v tekhnike i nauke (Statistics and Planning of Experiments in Technology and Science), Moscow: Mir, 1980.

  10. Agraval, G., Applications of Nonlinear Fiber Optics, London: Academic, 2001.

    Google Scholar 

  11. Poggiolini, P. and Jiang, Y., J. Lightwave Technol., 2016, vol. 35, p. 458.

    Article  ADS  Google Scholar 

  12. Yushko, O.V., Nanii, O.E., Redyuk, A.A., Treshchikov, V.N., and Fedoruk, M.P., Quantum Electron., 2015, vol. 45, p. 75.

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project AAAA-A21-121012190005-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shapiro.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, E.G., Shapiro, D.A. Nonlinear Noise Statistics in a High-Speed Optical Communication Line without Dispersion Compensation. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S96–S104 (2022). https://doi.org/10.3103/S1068335622130103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130103

Keywords:

Navigation