Skip to main content
Log in

Parallel Modes at a Pulsed Two-Frequency Resonance in the Lambda System of Degenerate Quantum Levels

  • CONTROL OF LASER RADIATION PARAMETERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The paper presents a theoretical study of the joint propagation of two elliptically polarized laser pulses resonantly interacting with quantum transitions in the lambda system of degenerate energy levels. The case of a weak high-frequency field in which the phenomenon of electromagnetically induced transparency occurs and the case of a powerful high-frequency field are considered. It is shown that, for both situations, there are optimal conditions imposed on the input pulses of interacting fields, under which the high-frequency field pulse undergoes the least absorption and distortion in the medium. The first condition gives a certain relation for the eccentricities of the polarization ellipses of the input fields. The second, less essential condition is the parallelism of the major axes of these ellipses. Both conditions are suggested by the theory of normal modes of electromagnetically induced transparency in the lambda system considered. Numerical simulation has shown that these conditions are quite well applicable not only in the case of weak high-frequency field, but also when high-frequency and low-frequency pulses have comparable peak intensities at the entrance to the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Demtröder, W., Laser Spectroscopy: Basic Concept and Instrumentation, Berlin: Springer, 2002.

    Google Scholar 

  2. Harris, S.E., Phys. Today, 1997, vol. 50, p. 36.

    Article  Google Scholar 

  3. Lukin, M.D., Rev. Mod. Phys., 2003, vol. 75, p. 457.

    Article  ADS  Google Scholar 

  4. Fleischhauer, M., Imamoğlu, A., and Marangos, J.P., Rev. Mod. Phys., 2005, vol. 77, p. 633.

    Article  ADS  Google Scholar 

  5. Duan, L.-M., Lukin, M.D., Cirac, J.I., and Zoller, P., Nature (London), 2001, vol. 414, p. 413.

    Article  ADS  Google Scholar 

  6. Sinatra, A., Phys. Rev. Lett., 2006, vol. 97, p. 253601.

  7. Martinalli, M., Valente, P., Failache, H., Felinto, D., Cruz, L.S., Nussenzveig, P., and Lezama, A., Phys. Rev. A, 2004, vol. 69, p. 043809.

  8. Godone, A., Micallilizio, S., and Levi, F., Phys. Rev. A, 2002, vol. 66, p. 063807.

  9. Lukin, M.D. and Imamoğlu, A., Nature (London), 2001, vol. 413, p. 273.

    Article  ADS  Google Scholar 

  10. Kocharovskaya, O. and Mandel, P., Phys. Rev. A, 1990, vol. 42, p. 523.

    Article  ADS  Google Scholar 

  11. Jen, H.H. and Daw-Wei Wang, Phys. Rev. A, 2013, vol. 87, p. 061802(R).

  12. Basler, C., Grzesiak, J., and Helm, H., Phys. Rev. A, 2015, vol. 92, p. 013809.

  13. Ronggang Liu, Tong Liu, Yingying Wang, Yujie Li, and Bingzheng Gai, Phys. Rev. A, 2017, vol. 96, p. 053823.

  14. Fam Le Kien and Rauschenbeutel, A., Phys. Rev. A, 2015, vol. 91, p. 053847.

  15. Hai-Hua Wang, Jing Wang, Zhi-Hui Kang, Lei Wang, Jin-Yue, Gao, Yi Chen, and Xiao-Jun Zhang, Phys. Rev. A, 2019, vol. 100, p. 013822.

  16. Grobe, R. and Eberly, J.H., Laser Phys., 1995, vol. 5, no. 3, p. 542.

    Google Scholar 

  17. Harris, S.E., Phys. Rev. Lett., 1993, vol. 70, no. 5, p. 552.

    Article  ADS  Google Scholar 

  18. Wielandy, S. and Gaeta, A.L., Phys Rev. Lett., 1998, vol. 81, p. 3359.

    Article  ADS  Google Scholar 

  19. Bo Wang, Shujing Li, Jie Ma, Hai Wang, Peng, K.C., and Min Xiao, Phys. Rev. A, 2006, vol. 73, p. 051801(R).

  20. Agarwal, G.S. and Shubhrangshu Dosgupta, Phys. Rev. A, 2003, vol. 67, p. 023814.

  21. Sautenkov, V.A., Rostovtsev, Y.V., Chen, H., Hsu, P., Agarwal, G.S., and Scully, M.O., Phys. Rev. Lett., 2005, vol. 94, p. 233601.

  22. Grobe, R., Hioe, F.T., and Eberly, J.H., Phys. Rev. Lett., 1994, vol. 73, p. 3183.

    Article  ADS  Google Scholar 

  23. Parshkov, O.M., Kvantovaya Elektron., 2018, vol. 48, no. 11, p. 1027.

    Article  Google Scholar 

  24. Parshkov, O.M., Kvantovaya Elektron., 2019, vol. 49, no. 11, p. 1019.

    Article  Google Scholar 

  25. Kasapi, A., Maneesh Jain, Yin, G.Y., and Harris, S.E., Phys. Rev. Lett., 1995, vol. 74, no. 13, p. 2447.

    Article  ADS  Google Scholar 

  26. Maneesh Jain, Kasapi, A., Yin, G.Y., and Harris, S.E., Phys. Rev. Lett., 1995, vol. 75, no. 4, p. 4385.

    Article  ADS  Google Scholar 

  27. DeZafra, R.L. and Marshall, A., Phys. Rev., 1968, vol. 170, p. 28.

    Article  ADS  Google Scholar 

  28. Handbook of Physical Quantities, Grigoriev, I.S. and Meilikhov, E.Z., Eds., Boca Raton, FL: CRC Press, 1996.

    Google Scholar 

  29. Harris, S.E., Phys. Rev. Lett., 1994, vol. 72, no. 1, p. 52.

    Article  ADS  Google Scholar 

  30. Kis, Z., Demeter, G., and Janszky, J., J. Opt. Soc. Am. B, 2013, vol. 30, p. 829.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Parshkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshkov, O.M. Parallel Modes at a Pulsed Two-Frequency Resonance in the Lambda System of Degenerate Quantum Levels. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S43–S52 (2022). https://doi.org/10.3103/S1068335622130097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130097

Keywords:

Navigation