Skip to main content
Log in

Laser Synthesis of Nanopowders Based on Zinc Selenide for Production of Highly Transparent Ceramics

  • EFFECT OF LASER RADIATION ON MATERIALS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Weakly agglomerated ZnSe, Cu:ZnSe, and Fe:ZnSe nanopowders have been obtained by evaporating a target of the corresponding chemical composition using an ytterbium-doped fiber laser, generating periodic pulses with a peak power of 600 W and duration of 120 μs. The nanoparticles are shaped as polyhedra and, more rarely, spheres with an average size of 18 nm. The nanopowder production rate at an average laser power of 300 W was ~100 g/h. Calculations showed that initial-target porosity (~30% in our case) leads to scattering of laser radiation and its highly nonuniform distribution in the target. In some regions of the target surface layer 10–15 μm thick, the laser radiation is randomly concentrated, and its intensity, due to the high refractive index of ZnSe (n ≈ 2.48), may exceed the incident radiation intensity by a factor of 10–245. This circumstance facilitates significantly the optical destruction and further evaporation of a target at a low peak incident radiation intensity (~0.43 MW/cm2). Photography of a laser torch showed that target evaporation by periodic laser pulses makes it possible to essentially reduce splashing of melt drops (under certain conditions). The necessary conditions are as follows: the pulse duration should not exceed 400 μs at a peak radiation intensity of 0.21 MW/cm2 and 200 μs at a peak intensity of 0.46 MW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Demirbas, U. and Sennaroglu, A., Opt. Lett., 2006, vol. 31, no. 15, p. 2293.

    Article  ADS  Google Scholar 

  2. Moskalev, I., Mirov, S., Mirov, M., Vasilyev, S., Smolski, V., Zakrevskiy, A., and Gapontsev, V., Opt. Express, 2016, vol. 24, no. 18, p. 21090.

    Article  ADS  Google Scholar 

  3. Mirov, S.B., Fedorov, V.V., Martyshkin, D.V., Moskalev, I.S., Mirov M., and Vasilyev, S., IEEE J. Sel. Top. Quantum Electron., 2015, vol. 21, no. 1, p. 1601719.

  4. Velikanov, S.D., Gavrishchuk, E.M., Zaretskii, N.A., Zakhryapa, A.V., Ikonnikov, V.B., Kazantsev, S.Yu., Kononov, I.G., Maneshkin, A.A., Mashkovskii, D.A., et al., Kvantovaya Elektron., 2017, vol. 47, no. 4, p. 303.

    Article  Google Scholar 

  5. Kozlovsky, V.I., Korostelin, Y.V., Podmar’kov, Y.P., Skasyrsky, Y.K., and Frolov, M.P., J. Phys.: Conf. Ser., 2016, vol. 740, p. 012006.

  6. Volodin, V.V. and Trebukhov, S.A., Distillyatsionnyye protsessy izvlecheniya i rafinirovaniya selena (Distillation Processes for the Extraction and Refining of Selenium), Almaty, 2017, p. 18.

    Google Scholar 

  7. Gavrishchuk, E.M., Neorg. Mater., 2003, vol. 39, no. 9, p. 1031.

    Google Scholar 

  8. Velikanov, S.D., Gavrishchuk E.M., Zakharov, N.G., Kozlovskii, V.I., Korostelin, Yu.V., Lazarenko, V.I., Maneshkin, A.A., Podmar’kov, Yu.P., Saltykov, Ye.V., Skasyrskiy Ya.K., et al., Kvantovaya Elektron., 2017, vol. 47, no. 9, p. 831.

    Article  Google Scholar 

  9. Dormidonov, A.E., Firsov, K.N., Gavrishchuk, E.M., Ikonnikov, V.B., Kazantsev, S.Yu., Kononov, I.G., Kotereva, T.V., Savin, D.V., and Timofeeva, N.A., Appl. Phys. B: Lasers Opt., 2016, vol. 122, no. 8, p. 211.

    Article  ADS  Google Scholar 

  10. Kozlovskii, V.I., Korostelin, Yu.V., Landman, A.I., Podmar’kov Yu.P., and Frolov, M.P., Surf. Inv., 2004, vol. 9, p. 26.

    Google Scholar 

  11. Korostelin, Yu.V., Kozlovsky, V.I, Nasibov, A.S., and Shapkin, P.V., J. Crystal Growth, 1999, vol. 197, p. 449.

    Article  ADS  Google Scholar 

  12. Akio Ikesue, Yan Lin Aung, and Voicu Lupei, Ceramic Lasers, Cambridge, UK: Cambridge University Press, 2013.

    Google Scholar 

  13. Garanin, S.G., Dmitryuk, A.V., Zhilin, A.A., Mikhailov M.D., and Rukavishnikov, N.N., Opt. Zh., 2010, vol. 77, no. 9, p. 52.

    Google Scholar 

  14. Zhou, G., Calvez, L., Delaizir, G., Zhang, X.-H., and Rocherulle, J., Optoelectron. Adv. Mater. Rapid Commun., 2014, vol. 8, nos. 5–6, p. 436.

    Google Scholar 

  15. Krishna Karki, Shenguan Yu, Fedorov V., Martyshkin D., Shova Subedi, Yiquan Wu, and Mirov, S., Opt. Mater. Express, 2020, vol. 10, no. 12, p. 3417.

    Article  ADS  Google Scholar 

  16. Popp, U., Herbig, R., Michel, G., Muller, E., and Oestreich, Ch., J. Eur. Ceram. Soc., 1998, vol. 18, p. 1153.

    Article  Google Scholar 

  17. Kurland, H.-D., Grabow, J., Stötzel, Chr., and Müller, F.A., J. Ceram. Sci. Technol., 2014, vol. 5, no. 4, p. 275.

    Google Scholar 

  18. Osipov, V.V., Platonov, V.V., and Lisenkov, V.V., in Handbook of Nanoparticles, Cham, Switzerland: Springer, 2015, vol. 2, pp. 1–22.

    Google Scholar 

  19. Osipov, V.V., Platonov, V.V., Lisenkov, V.V., and Tikhonov, E.V., Fiz. Khim. Obrab. Mater., 2021, no. 5, p. 5.

  20. Osipov, V.V., Platonov, V.V., Lisenkov, V.V., Tikhonov E.V., and Podkin, A.V., Appl. Phys. A, 2018, vol. 124, p. 3.

    Article  ADS  Google Scholar 

  21. Connolly, J., diBenedetto, B., and Donadio, R., Proc. SPIE, 1979, vol. 181, p. 141.

    Article  ADS  Google Scholar 

  22. Querry, M.R., Optical constants of minerals and other materials from the millimeter to the ultraviolet, Contractor Report CRDECCR-88009, 1987.

  23. Hsuan I Wang, Wei Tsung Tang, et al., J. Nanomater., 2012, vol. 2012, p. 278364.

  24. Osipov, V.V., Lisenkov, V.V., Platonov, V.V., and Tikhonov, E.V., Kvantovaya Elektron., 2018, vol. 48, no. 3, p. 235.

    Article  Google Scholar 

  25. Karnaukhov, A.P., Tekstura dispersnykh i poristykh materialov (Texture of Dispersed and Porous Materials), Novosibirsk: Nauka, 1999, p. 127.

  26. Bulgakov, A.V., Bulgakova, N.M., Burakov, I.M., et al., Sintez nanorazmernykh materialov pri vozdeystvii moshchnykh potokov energii na veshchestvo (Synthesis of Nanoscale Materials under the Influence of Powerful Energy Flows on Matter), Novosibirsk: Inst. Teplofiz. SO RAN, 2009, p. 76.

  27. Tribelsky, M.I., J. Opt. Technol., 2017, vol. 84, no. 7, p. 431.

    Article  Google Scholar 

  28. Rybin, M.V. and Limonov, M.F., Phys. Usp., 2019, vol. 62, no. 8, p. 823.

    Article  ADS  Google Scholar 

  29. Obolonchik, V.A., Selenidy (Selenides), Moscow: Metallurgiya, 1972, p. 296.

    Google Scholar 

  30. Novoselova, A.V. and Pashinkin, A.S., Davleniye para letuchikh khal’kogenidov metallov (Vapor Pressure of Volatile Metal Chalcogenides), Moscow: Nauka, 1977, p. 112.

  31. Esirkegenov, G.M., Valiev, H.Kh., and Spitsyn, V.A., in Metallurgiya i obogashcheniye (Metallurgy and Enrichment), Alma-Ata: Kaz. Politekh. Inst., 1975, iss. 10, pp. 37–41.

  32. Vishnyakov, A.V., Bebyakin, M.M., and Zubkovskaya, V.N., Zh. Neorg. Khim., 1982, vol. 27, no. 7, p. 1820.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.G. Lisienko (Ural Federal University, Institute of Physics and Technology) for the elemental analysis of the samples of targets and nanopowders, V.A. Shitov (Institute of Experimental Physics of the Ural Branch of the Russian Academy of Sciences) and A.V. Abramov (Ural Federal University, Institute of Physics and Technology) for preparing evaporation targets, M.V. Kremenetskii for the participation in the processing of laser torch luminescence oscillograms, and V.V. Lisenkov for the discussion of the results. Photographing of nanoparticles, X-ray diffraction analysis, and analysis of the specific surface area were performed using equipment of the Shared Research Center of the Institute of Experimental Physics of the Ural Branch of the Russian Academy of Sciences.

Funding

This study was performed within State assignment no. AAAA-A19-119020790031-5 and supported in part by the Russian Foundation for Basic Research, project no. 20-08-00054A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Osipov or V. V. Platonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, V.V., Platonov, V.V., Murzakaev, A.M. et al. Laser Synthesis of Nanopowders Based on Zinc Selenide for Production of Highly Transparent Ceramics. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S68–S81 (2022). https://doi.org/10.3103/S1068335622130085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130085

Keywords:

Navigation