Skip to main content
Log in

Counterpropagating Four-Wave Mixing on Amplitude–Phase Holographic Gratings in a Qubic Photorefractive Crystal

  • NONLINEAR OPTICAL PHENOMENA
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A system of coupled wave equations that can be used to find the components of the vector amplitudes of linearly polarized light waves on amplitude–phase holographic gratings formed in a cubic photorefractive crystal due to four-wave mixing has been presented. The linear electro-optical, photoelastic, and inverse piezoelectric effects, as well as natural optical activity, circular dichroism, and absorption in the crystal, have been taken into account when deriving the coupling equations. The characteristics of energy exchange in a (111) InP:Fe crystal in the presence of four-wave mixing have been analyzed. It has been shown that the best agreement of the theoretically calculated dependences of the intensities of the p and s polarized components of the conjugate light wave on the orientation angle with the known experimental results is achieved under the assumption that several amplitude–phase holographic gratings are formed in the crystal. The dependence of the intensity of the conjugate wave on the orientation angle and the azimuth of the linear polarization of the pump wave has been theoretically studied. It has been shown that this intensity can be significantly increased by choosing the optimal values of these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Petrov, V.M. and Shamrai, A.V., Interferentsiya i difraktsiya dlya interferentsionnoy fotoniki (Interference and Diffraction for Interference Photonics), St. Petersburg: Lan’, 2019.

  2. Tao, L., Daghighian, H.M., and Levin, C.S., J. Med. Imaging, 2017, vol. 4, p. 011010.

  3. Kwak, C.H., Kim, G.Y., and Javidi, B., Opt. Commun., 2019, vol. 437, p. 95.

    Article  ADS  Google Scholar 

  4. Odulov, S.G., Soskin, M.S., and Khizhnyak, A.I., Lazery na dinamicheskikh reshetkakh: opticheskiye generatory na chetyrekhvolnovom smeshenii (Dynamic Grating Lasers: Four-Wave Mixing Optical Oscillators), Moscow: Nauka, 1990.

  5. Petrov, M.P., Stepanov, S.I., and Khomenko, A.V., Fotorefraktivnyye kristally v kogerentnoy optike (Photorefractive Crystals in Coherent Optics), St. Petersburg: Nauka, 1992.

  6. Huignard, J.P., Herriau, J.P., Aubourg, P., and Spitz, E., Opt. Lett., 1979, vol. 4, p. 21.

    Article  ADS  Google Scholar 

  7. Rajbenbach, H., Huignard, J.P., and Refregier, Ph., Opt. Lett., 1984, vol. 9, p. 558.

    Article  ADS  Google Scholar 

  8. Stepanov, S.I., Petrov, M.P., and Krasin’kova, M.V., Zh. Tekh. Fiz., 1984, vol. 54, p. 1223.

    Google Scholar 

  9. Stepanov, S.I. and Petrov, M.P., Pism’a Zh. Tekh. Fiz., 1984, vol. 10, p. 1356.

    Google Scholar 

  10. Ja, Y.H., Opt. Commun., 1981, vol. 41, p. 159.

    Article  ADS  Google Scholar 

  11. Klein, M.B., McCahon, S.W., Boggess, T.F., and Valley, G.C., J. Soc. Opt. Am. B, 1988, vol. 5, p. 2467.

    Article  ADS  Google Scholar 

  12. Rajbenbach, H., Imbert, B., Huignard, J.P., and Mallick, S., Opt. Lett., 1989, vol. 14, p. 78.

    Article  ADS  Google Scholar 

  13. Ding, Y., and Eichler, H.J., Opt. Commun., 1994, vol. 110, p. 456.

    Article  ADS  Google Scholar 

  14. Stepanov, S.I. and Petrov, V.M., Opt. Commun., 1985, vol. 53, p. 64.

    Article  ADS  Google Scholar 

  15. Cronin-Golomb, M., Fischer, B., White, J.O., and Yariv, A., IEEE J. Quantum Electron., 1984, vol. 1, p. 12.

    Article  ADS  Google Scholar 

  16. Ringhofer, K.H. and Solymar, L., Appl. Phys. B., 1989, vol. 48, p. 395.

    Article  ADS  Google Scholar 

  17. Hall, T.J., Powell, A.K., and Stace, C., Opt. Commun., 1990, vol. 75, p. 159.

    Article  ADS  Google Scholar 

  18. Erdmann, A., Kowarschik, R., and Wenke, L., J. Soc. Opt. Am. B, 1989, vol. 6, p. 1845.

    Article  ADS  Google Scholar 

  19. Izvanov, A.A., Mandel’, A.E., Khat’kov, N.D., and Shandarov, S.M., Avtometriya, 1986, vol. 2, p. 79.

    Google Scholar 

  20. Stepanov, S.I., Shandarov, S.M., and Khat’kov, N.D., Fiz. Tverd. Tela, 1987, vol. 10, p. 3054.

    Google Scholar 

  21. Shepelevich, V.V., Shandarov, S.M., and Mandel, A.E., Ferroelectrics, 1990, vol. 110, p. 235.

    Article  ADS  Google Scholar 

  22. Gusel’nikova, A.V., Shandarov, S.M., Plesovskikh, A.M., Romashko, R.V., and Kul’chin, Yu.N., J. Opt. Technol., 2006, vol. 73, p. 760.

    Article  ADS  Google Scholar 

  23. Litvinov, R.V., Polkovnikov, S.I., and Shandarov S.M., Kvantovaya Elektron., 2001, vol. 31, p. 167.

    Article  Google Scholar 

  24. Montemezzani, G. and Zgonik, M., Phys. Rev. E, 1997, vol. 55, p. 1035.

    Article  ADS  Google Scholar 

  25. Shepelevich, V.V., Makarevich, A.V., and Shandarov, S.M., Tech. Phys. Lett., 2014, vol. 40, p. 1024.

    Article  ADS  Google Scholar 

  26. Burkov, V.I., Kargin Yu.F., Kizel’ V.A., Sitnikova, V.I., and Skorikov, V.M., JETP Lett., 1983, vol. 38, p. 390.

    ADS  Google Scholar 

  27. Zel’dovich, B.Ya., Pilipetskii, N.F., and Shkunov, V.V., Obrashchenie volnovogo fronta (Wavefront Reversal), Moscow: Nauka, 1985.

  28. Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., and Vinetskii, V.L., Ferroelectrics, 1979, vol. 22, p. 949.

    Article  ADS  Google Scholar 

  29. Shandarov, S.M., Shepelevich, V.V., and Khatkov, N.D., Opt. Spectrosc., 1991, vol. 70, p. 627.

    ADS  Google Scholar 

  30. Dargus, A. and Kundrotas, J., Handbook on Physical Properties of Ge, Si, GaAs, InP, Vilnius, Lithuania: Science and Encyclopedia Publishers, 1994.

    Google Scholar 

  31. Bylsma, R.B., Olson, D.H., and Glass, A.M., Opt. Lett., 1988, vol. 13, p. 853.

    Article  ADS  Google Scholar 

  32. Kogelnik, H., Bell Syst. Tech. J., 1969, vol. 48, p. 2909.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to referees for careful reading the manuscript and remarks allowing me to noticeably improve the quality of the article.

Funding

This work was supported by the Ministry of Education of the Republic of Belarus (contract no. 1410/2021 dated March 22, 2021, State Research Program no. 6 “Photonics and Electronics for Innovations” for 2021–2025, task no. 6.1.14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Naunyka.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by R. Tyapaev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naunyka, V.N. Counterpropagating Four-Wave Mixing on Amplitude–Phase Holographic Gratings in a Qubic Photorefractive Crystal. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S58–S67 (2022). https://doi.org/10.3103/S1068335622130073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130073

Keywords: 

Navigation