Skip to main content
Log in

Simulation of the Limiting Parameters of Polarimetric Fiber-Optic Current Sensor on a Spun Fiber

  • FIBER-OPTIC COMMUNICATION LINES, FIBER SENSORS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The results of a numerical simulation of the limiting parameters of a spun-fiber-based polarimetric fiber-optic current sensor are presented. The technique for simulating sensor parameters is described. The trajectory of change in the polarization state (PS) and the accumulation efficiency of the magneto-optical (MO) sensor response along the fiber are analyzed using the Poincaré sphere approach. The main sensor characteristics depending on the fiber polarization parameters (initial sensitivity, operating measurement range and its symmetry relative to zero current, and shape of the sensor response curve in the measurement range) are presented. The conditions for correction—sensor response linearization by bend-induced birefringence—are described. The influence of the spectral width of the radiation source on the sensor response is modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Nicatti, P.A. and Robert, P., J. Phys. E: Sci. Instrum., 1988, vol. 21, p. 791.

    Article  ADS  Google Scholar 

  2. Kim, B.Y., Park, D., and Choi, S.S., IEEE J. Quantum Electron., 1982, vol. QE-18, p. 455.

    ADS  Google Scholar 

  3. Enokihara, A., Izutsu, M., and Sueta, T., J. Lightwave Technol., 1987, vol. LT-5, p. 1584.

    Article  ADS  Google Scholar 

  4. Frosio, G. and Dandliker, R., Appl. Opt., 1994, vol. 33, p. 6111.

    Article  ADS  Google Scholar 

  5. Blake, J., Tantaswadi, P., and de Carvalho, R.T., IEEE Trans. Power Delivery, 1996, vol. 11, p. 116.

    Article  Google Scholar 

  6. Tang, D., Rose, A.H., Day, G.W., and Etzel, S.M., J. Lightwave Technol., 1991, vol. 9, p. 1031.

    Article  ADS  Google Scholar 

  7. Perciante, C.D., Aparicio, S., Ilia, R., and Ferrari, J.A., Appl. Opt., 2015, vol. 54, p. 5708.

    Article  ADS  Google Scholar 

  8. Kurosawa, K., Yoshida, S., and Sakamoto, K., J. Lightwave Technol., 1995, vol. 13, p. 1378.

    Article  ADS  Google Scholar 

  9. Barlow, A.J., Payne, D.N., Hadley, M.R., and Mansfield, R.J., Electron. Lett., 1981, vol. 17, p. 725.

    Article  ADS  Google Scholar 

  10. Rashleigh, S.C. and Ulrich, R., Appl. Phys. Lett., 1979, vol. 34, p. 768.

    Article  ADS  Google Scholar 

  11. Li, L., Qian, J.-R., and Payne, D.N., Electron. Lett., 1986, vol. 22, p. 1142.

    Article  ADS  Google Scholar 

  12. Laming, R.I. and Payne, D.N., J. Lightwave Technol., 1989, vol. 7, p. 2084.

    Article  ADS  Google Scholar 

  13. Andronova, I.A. and Malykin, G.B., Phys. Usp., 2002, vol. 45, p. 793. https://doi.org/10.1070/PU2002v045n08ABEH001073

    Article  ADS  Google Scholar 

  14. Gubin, V.P., Isaev, V.A., Morshnev, S.K., Sazonov, A.I., Starostin, N.I., Chamorskii, Yu.K., and Usov, A.I., Quantum Electron., 2006, vol. 36, p. 287.

    Article  ADS  Google Scholar 

  15. Peng, N., Huang, Y., Wang, S., Wen, T., Liu, W., Zuo, Q., and Wang, L., Photonics Technol. Lett., 2013, vol. 25, p. 1668.

    Article  ADS  Google Scholar 

  16. Bohnert, K., Brandle, H., Brunzel, M.G., Gabus, P., and Guggenbach, P., IEEE Trans. Indust. Appl., 2007, vol. 43, p. 180.

    Article  Google Scholar 

  17. Starostin, N.I., Ryabko, M.V., Chamorovskii, Y.K., Gubin, V.P., Sazonov, A.I., Morshnev, S.K., and Korotkov, N.M., Key Eng. Mater., 2010, vol. 437, p. 31.

    Article  Google Scholar 

  18. Nguyen, T.X., Ely, J.J., and Szatkowski, G.N., Proc. SPIE, 2015, vol. 9480, p. 94800X.

  19. Aerssens, M., Descamps, F., Gusarov, A., Megret, P., Moreau, P., and Wuilpart, M., Appl. Opt., 2015, vol. 54, p. 5983.

    Article  ADS  Google Scholar 

  20. Bohnert, K., Frank, A., Yang, L., Gu, X., and Muller, G.M., J. Lightwave Technol, 2019, vol. 37, p. 3672.

    Article  ADS  Google Scholar 

  21. Bedrin, A.G., Zhilin, A.N., and Lovchy, I.L., Meas. Tech., 2021, vol. 64, p. 724.

  22. Jerrard, H.G., J. Opt. Soc. Am., 1954, vol. 44, p. 634.

    Article  ADS  Google Scholar 

  23. Lovchy, I.L., J. Opt. Technol., 2010, vol. 77, p. 756.

  24. Ulrich, R., Rashleigh, S.C., and Eickhoff, W., Opt. Lett., 1980, vol. 5, p. 273.

    Article  ADS  Google Scholar 

  25. Przhiyalkovskii, Ya.V., Morshnev, S.K., Starostin, N.I., and Gubin, V.P., Quantum Electron., 2013, vol. 43, p. 167.

    Article  ADS  Google Scholar 

  26. Gubin, V.P., Starostin, N.I., Przhiyalkovskii, Ya.V., Morshnev, S.K., Sazonov, A.I., and Otrokhov, S.Yu., Fotonika, 2018, vol. 12, p. 762.

    Google Scholar 

  27. Noda, J., Hosaka, T., Sasaki, Y., and Ulrich, R., Electron. Lett., 1984, vol. 20, p. 906.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Lovchy.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovchy, I.L. Simulation of the Limiting Parameters of Polarimetric Fiber-Optic Current Sensor on a Spun Fiber. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S105–S119 (2022). https://doi.org/10.3103/S106833562213005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833562213005X

Keywords:

Navigation