Skip to main content
Log in

A Picosecond Raman Fiber-Optic Laser with a Wavelength of 2.84 μm

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The Raman generation parameters at a wavelength of 2.84 μm in a hollow-core revolver fiber filled with methane are studied, dependent on the gas pressure and on the energy and duration of chirped pulses of erbium fiber-optic pumping source with a wavelength of 1.56 μm. It is shown that the threshold energy of pumping pulses decreases as the methane pressure increases, and the growth in their duration promotes more efficient Raman conversion 1.56 μm → 2.84 μm. The maximum pulse energy at a wavelength of 2.84 and the quantum conversion efficiency are 1.6 μJ and 12%, respectively. It is numerically demonstrated that the quantum conversion efficiency can be increased up to the value above 50% at single-mode pumping radiation with pulse energy up to 100 μJ. The calculations show that the main process limiting the Raman conversion efficiency in the studied parameter range is the coherent four-wave interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Bekman, H.H.P.Th., van den Heuvel, J.C., van Putten, F.J.M., and Schleijpen, R., Proc. SPIE, 2004, vol. 5615, p. 27.

    Article  ADS  Google Scholar 

  2. Werle, P., Slemr, F., Maurer, K., Kormann, R., Mucke, R., and Janker, B., Opt. Lasers Eng., 2002, vol. 37, p. 101.

    Article  Google Scholar 

  3. Wang, Y., Feng, Y., Adamu, A.I., Dasa, M.K., Antonio-Lopez, J.E., Amezcua-Correa, R., and Markos, C., Sci. Rep., 2021, vol. 11, p. 3512.

    Article  ADS  Google Scholar 

  4. Tafoya, J., Pierce, J., Jain, R.K., and Wong, B., Proc. SPIE, 2004, vol. 5312, p. 218.

    Article  ADS  Google Scholar 

  5. Kaufmann, R., Hartmann, A., and Hibst, R., J. Dermatol. Surg. Oncol., 1994, vol. 20, p. 112.

    Article  Google Scholar 

  6. Schliesser, A., Picqué, N., and Hänsch, T.W., Nat. Photonics, 2012, vol. 6, p. 440.

    Article  ADS  Google Scholar 

  7. Cruz, F.C., Maser, D.L., Johnson, T., Ycas, G., Klose, A., Giorgetta, F.R., Coddington, I., and Diddams, S.A., Opt. Express, 2015, vol. 23, p. 26814.

    Article  ADS  Google Scholar 

  8. Amini-Nik, S., Kraemer, D., Cowan, M.L., Gunaratne, K., Nadesan, P., Alman, B.A., and Miller, R.J.D., PLoS One, 2010, vol. 5, p. e13053.

  9. Bubb, D.M., Papantonakis, M.R., Horwitz, J.S., Haglund, R.F. Jr., Toftmann, B., McGill, R.A., and Chrisey, D.B., Chem. Phys. Lett., 2002, vol. 352, p. 135.

    Article  ADS  Google Scholar 

  10. Chen, M.-C., Arpin, P., Popmintchev, T., Gerrity, M., Zhang, B., Seaberg, M., Popmintchev, D., Murnane, M.M., and Kapteyn, H.C., Phys. Rev. Lett., 2010, vol. 105, p. 173901.

  11. Hanna, D.C., Pointer, D.J., and Pratt, D.J., IEEE J. Quantum Electron., 1986, vol. 22, p. 332.

    Article  ADS  Google Scholar 

  12. Krylov, V., Rebane, A., Ollikainen, O., Erni, D., Wild, U., Bespalov, V., and Staselko, D., Opt. Lett., 1996, vol. 21, p. 381.

    Article  ADS  Google Scholar 

  13. Bufetov, I.A., Kosolapov, A.F., Pryamikov, A.D., Gladyshev, A.V., Kolyadin, A.N., Krylov, A.A., Yatsenko, Y.P., and Biriukov, A.S., Fibers, 2018, vol. 6, p. 39.

    Article  Google Scholar 

  14. Carman, B.I., Shimizu, F., Wang, C.S., and Bloembergen, N., Phys. Rev. A, 1970, vol. 2, p. 60.

    Article  ADS  Google Scholar 

  15. Konyashchenko, A.V., Losev, L.L., and Tenyakov, S.Yu., Kvantovaya Elektron., 2011, vol. 41, p. 459.

    Article  Google Scholar 

  16. Spence, D.J., Prog. Quantum Electron., 2017, vol. 51, p. 1.

    Article  ADS  Google Scholar 

  17. Konyashchenko, A.V., Losev, L.L., and Pazyuk, V.S., Kvantovaya Elektron., 2021, vol. 51, p. 217.

    Article  Google Scholar 

  18. Konyashchenko, A.V., Kostryukov, P.V., Losev, L.L., and Pazyuk, V.S., Kvantovaya Elektron., 2017, vol. 47, p. 1.

    Article  Google Scholar 

  19. Konyashchenko, A.V., Kostryukov, P.V., Losev, L.L., and Pazyuk, V.S., Kvantovaya Elektron., 2017, vol. 47, p. 593.

    Article  Google Scholar 

  20. Jordan, C., Stankov, K.A., Marowsky, G., and Santo-Said, E.J., Appl. Phys. B, 1994, vol. 59, p. 471.

    Article  ADS  Google Scholar 

  21. Konyashchenko, A.V., Losev, L.L., and Pazyuk, V.S., Opt. Lett., 2019, vol. 44, p. 1646.

    Article  ADS  Google Scholar 

  22. Zhavoronkov, N., Noack, F., Petrov, V., Kalosha, V.P., and Herrmann, J., Opt. Lett., 2001, vol. 26, p. 47.

    Article  ADS  Google Scholar 

  23. Krylov, V., Ollikainen, O., Wild, U.P., Rebane, A., Bespalov, V.G., and Staselko, D.I., J. Opt. Soc. Am. B, 1998, vol. 15, p. 2910.

    Article  ADS  Google Scholar 

  24. Uesugi, Y., Mizutani, Y., Kruglik, S.G., Shvedko, A.G., Orlovich, V.A., and Kitagawa, T., J. Raman Spectrosc., 2000, vol. 31, p. 339.

    Article  ADS  Google Scholar 

  25. Konyashchenko, A.V., Losev, L.L., and Tenyakov, S.Yu., Opt. Express, 2007, vol. 15, p. 11855.

    Article  ADS  Google Scholar 

  26. Gladyshev, A.V., Astapovich, M.S., Yatsenko, Yu.P., Kosolapov, A.F., Okhrimchuk, A.G., and Bufetov, I.A., Kvantovaya Elektron., 2019, vol. 49, p. 1089.

    Article  Google Scholar 

  27. Vicario, C., Shalaby, M., Konyashchenko, A., Losev, L., and Hauri, C.P., Opt. Express, 2016, vol. 41, p. 4719.

    Google Scholar 

  28. Didenko, N.V., Konyashchenko, A.V., Kostryukov, P.V., Losev, L.L., Pazyuk, V.S., Tenyakov, S.Yu., Molchanov, V.Ya., Chizhikov, S.I., and Yushkov, K.B., Kvantovaya Elektron., 2015, vol. 45, p. 1101.

    Article  Google Scholar 

  29. Cao, L., Gao, S.-F., Peng, Z.-G., Wang, X.-C., Wang, Y., and Wang P., Opt. Express, 2018, vol. 26, p. 5609.

    Article  ADS  Google Scholar 

  30. Gladyshev, A., Yatsenko, Y., Kolyadin, A., Kompanets, V., and Bufetov, I., Opt. Mater. Express, 2020, vol. 10, p. 3081.

    Article  ADS  Google Scholar 

  31. Krylov, A.A., Gladyshev, A.V., Senatorov, A.K., Kolyadin, A.N., Kosolapov, A.F., Khudyakov, M.M., Likhachev, M.E., and Bufetov, I.A., Kvantovaya Elektron., 2022, vol. 52, p. 274.

    Article  Google Scholar 

  32. Leonov, S.O., Voropaev, V.S., and Krylov, A.A., Appl. Phys. B, 2019, vol. 125, p. 39.

    Article  ADS  Google Scholar 

  33. Krylov, A.A., Senatorov, A.K., Pryamikov, A.D., Kosolapov, A.F., Kolyadin, A.N., Alagashev, G.K., Gladyshev, A.V., and Bufetov, I.A., Laser Phys. Lett., 2017, vol. 14, p. 035104.

  34. Khudyakov, M.M., Lipatov, D.S., Gur’yanov, A.N., Bubnov, M.M., and Likhachev, M.E., Opt. Lett., 2020, vol. 45, p. 1782.

    Article  ADS  Google Scholar 

  35. Tmra, Y., Ide, K., and Takuma, H., Chem. Phys. Lett., 1982, vol. 91, p. 299.

    Article  ADS  Google Scholar 

  36. Russell, P., Hölzer, P., Chang, W., Abdolvand, A., and Travers, J.C., Nat. Photonics, 2014, vol. 8, p. 278.

    Article  ADS  Google Scholar 

  37. Shen, Y.R. and Bloembergen, N., Phys. Rev. A, 1965, vol. 137, p. A1787.

    Article  ADS  Google Scholar 

  38. Shen, Y.R., The Principles of Nonlinear Optics, New York: Wiley, 1984.

    Google Scholar 

  39. Dudley, J. and Taylor, R., Supercontinuum Generation in Optical Fibers, Cambridge: University Press, 2010.

    Book  Google Scholar 

  40. Ottush, J.J. and Rockwell, D.A., IEEE J. Quantum. Electron., 1988, vol. 24, p. 2076.

    Article  ADS  Google Scholar 

  41. Shaw, M.J. and Hooker, C.J., Opt. Commun., 1993, vol. 103, p. 153.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank K.K. Bobkov (Prokhorov General Physics Institute of the Russian Academy of Sciences) and D.S. Chernykh (Lebedev Physical Institute of the Russian Academy of Sciences) for their aid in creating the powerful erbium source of ultrashort pulses and measuring its characteristics. The authors also thank the staff of the Unique Research facility “VOLOKNO” of the Prokhorov General Physics Institute, Russian Academy of Sciences, for preparation and determination of the characteristics of the hollow-core optical fiber.

Funding

The work is supported by the Russian Science Foundation, project no. 19-12-00361 (https://rscf.ru/project/19-12-00361/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krylov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, A.A., Gladyshev, A.V., Senatorov, A.K. et al. A Picosecond Raman Fiber-Optic Laser with a Wavelength of 2.84 μm. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S7–S20 (2022). https://doi.org/10.3103/S1068335622130048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130048

Keywords:

Navigation