Skip to main content
Log in

Formation of 2D Image Contours in the Zeroth and Plus Second Diffraction Orders during Double Bragg’s Diffraction

  • DIFFRACTION OPTICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The possibility of formation of a 2D optical image contour during double Bragg’s diffraction simultaneously in two Bragg’s orders is investigated. Transfer functions of Bragg’s orders of double diffraction are obtained with account for ellipticity of optical beams and the curvature of wave surfaces of the crystal. The conditions for obtaining the image contour simultaneously in the zeroth and plus second Bragg’s orders are determined. This is confirmed experimentally using the example of Fourier processing of the image transferred by radiation at a wavelength of 0.63 μm. Double Bragg’s diffraction is realized based on an acousto-optic cell made of a uniaxial gyrotropic paratellurite crystal, which operates at an acoustic frequency of 20.3 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Karelin, A.V., Len’kov, S.V., Molin, S.M., and Chekunov, D.V., Pribory systemy. Upravlenie, kontrol, diagnostika, 2008, no. 1, p. 46.

  2. Vagin, V.A. and Khorokhorin, A.I., Fizicheskie osnovy priborostroeniya, 2019, vol. 8, no. 4(34), p. 11.

  3. Bychkov, S.I. and Rumyantsev, K.E., Poiks i obnaruzhenie opticheskikh signalov (Search for and Detection of Optical Signals), Taganrog: TRTU, 2000.

  4. Bogdanovich, V.A. and Vostretsov A.G., Teoriya ustoichivogo obnaruzheniya, razlicheniya, i otsenivaniya signalov (Theory of Stable Detection, Distinguishing, and Evaluation of Signals, Moscow: Fizmatlit, 2003.

  5. Ampliev, A.E. and Rumyantsev K.E., Izv. Vyssh. Uchebn. Zaved. Radioelektronika, 2016, no. 5, p. 3.

  6. Zakharov, A.A., Zhiznyakov, A.L., and Titov, V.S., Kompyuternaya optika, 2019, vol. 43, no. 5, p. 810.

  7. Voloshinov, V.B., Parygin, V.N., and Chirkov, L.E., Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., 1976, vol. 17, no. 3, p. 305.

    Google Scholar 

  8. Balakshii, V.I., Parygin, V.N., and Chirkov, L.E., Fizicheskie osnovy akustooptiki (Physical Bases of Acoustooptics), Moscow: Radio i Svyaz, 1985.

  9. Xu, J. and Stroud, R., Acousto-Optic Devices: Principles, Design, and Applications, New York: Wiley, 1992.

    Google Scholar 

  10. Rakovskii, V.Yu. and Shcherbakov, A.S., Sov. Phys. Tech. Phys., 1990, vol. 60, no. 7, p. 107.

    Google Scholar 

  11. Kotov, V.M., Shkerdin, G.N., Shkerdin, D.G., Kotov, E.V., and Bulyuk A.N., J. Commun. Technol. Electron., 2008, vol. 53, no. 3, p. 313.

    Article  Google Scholar 

  12. Kotov, V.M., Shkerdin, G.N., and Grigor’evskii, V.I., J. Commun. Technol. Electron., 2013, vol. 58, no. 3, p. 226.

    Article  Google Scholar 

  13. Balakshii, V.I. and Voloshinov, V.B., Quantum Electron., 2005, vol. 35, no. 1, p. 85.

    Article  ADS  Google Scholar 

  14. Balakshy, V.I., Voloshinov, V.B., Babkina, T.M., and Kostyuk, D.E., J. Mod. Opt., 2005, vol. 52, no. 1.

  15. Balakshy, V.I. and Kostyuk, D.E., Appl. Opt., 2009, vol. 48, p. C24.

    Article  ADS  Google Scholar 

  16. Yablokova, A.A., Machikhin, A.S., Batshev, V.I., Pozhar, V.E., and Boritko, S.V., Proc. SPIE, 2019, vol. 11032, p. 1103215.

  17. Uchida, N. and Ohmachi, Y., J. Appl. Phys., 1969, vol. 40, no. 12, p. 4692.

    Article  ADS  Google Scholar 

  18. Uchida, N., Phys. Rev. B, 1971, vol. 4, no. 10, p. 3736.

    Article  ADS  Google Scholar 

  19. Goodman, J.W., Introduction to Fourier Optics, New York: McGraw-Hill, 1996.

    Google Scholar 

  20. Balakshii, V.I., Radiotekh. Elektron., 1984, vol. 29, no. 8, p. 1610.

    ADS  Google Scholar 

  21. Piskunov, N.S., Differentsial’noe i integral’noe ischisleniya dlya vtuzov. Vol. 2 (Differential and Integral Calculus for Technical Colleges. Vol. 2), Moscow: Nauka, 1970.

  22. Kotov, B.M., Akustooptika. Breggovskaya difraktsiya mnogotsvetnogo izlucheniya (Acoustooptics. Bragg Diffraction of Multicolor Radiation), Moscow: Yanus-K, 2016.

  23. Akusticheskie kristally (Acoustic Crystals), Shaskol’skii, M.P., Ed., Moscow: Nauka, 1982.

  24. Kizel, V.A. and Burkov, V.I., Girotropiya kristallov (Crystal Gyrotropy), Moscow: Nauka, 1980.

  25. Kotov, V.M., Averin, S.V., Kotov, E.V., and Shkerdin, G.N., Appl. Opt., 2018, vol. 57, no. 10, p. C83.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-21-00059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kotov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by N. Wadhwa

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, V.M., Averin, S.V., Zenkina, A.A. et al. Formation of 2D Image Contours in the Zeroth and Plus Second Diffraction Orders during Double Bragg’s Diffraction. Bull. Lebedev Phys. Inst. 49 (Suppl 1), S89–S95 (2022). https://doi.org/10.3103/S1068335622130036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622130036

Keywords:

Navigation