Skip to main content
Log in

Waveguide Tm:YAP Laser with a Pulse Repetition Rate of 8 GHz

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A compact waveguide Tm:YAP laser with a pulse repetition rate of 8 GHz is developed. A controllable change in the intracavity loss provides continuous tuning of the central emission wavelength of the laser operating in the Q-switched mode-locking in the range from 1925 to 1950 nm, as well as makes it possible dual-wavelength lasing. The main approach of this study is the use of waveguide structures inside the Tm:YAP crystal and the saturable absorber based on graphene. This approach is universal for producing compact lasers with the gigahertz pulse repetition rate, operating in a wide spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ebrahim-Zadeh, M. and Sorokina, I.T., Mid-Infrared Coherent Sources and Applications, Dordrecht: Springer Netherlands, 2008. https://doi.org/10.1007/978-1-4020-6463-0

    Book  Google Scholar 

  2. Chan, V.W.S., Optical space communications, IEEE J. Sel. Top. Quantum Electron., 2000, vol. 6, no. 6, pp. 959–975. https://doi.org/10.1109/2944.902144

    Article  ADS  Google Scholar 

  3. Bouma, B.E., Nelson, L.E., Tearney, G.J., Jones, D.J., Brezinski, M.E., and Fujimoto, J.G., Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using ER- and Tm-doped fiber sources, J. Biomed. Opt., 1998, vol. 3, no. 1, pp. 76–79. https://doi.org/10.1117/1.429898

    Article  ADS  Google Scholar 

  4. Chu, S.-W., Liu, T.-M., Sun, C.-K., Lin, C.-Y., and Tsai, H.-J., Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser, Opt. Express, 2003, vol. 11, no. 8, pp. 933–938. https://doi.org/10.1364/OE.11.000933

    Article  ADS  Google Scholar 

  5. Bartels, A., Gebs, R., Kirchner, M.S., and Diddams, S.A., Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser, Opt. Lett., 2007, vol. 32, no. 17, pp. 2553–2555. https://doi.org/10.1364/OL.32.002553

    Article  ADS  Google Scholar 

  6. Jones, D.J., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 2000, vol. 288, no. 5466, pp. 635–639. https://doi.org/10.1126/science.288.5466.635

    Article  ADS  Google Scholar 

  7. Hönninger, C., Paschotta, R., Morier-Genoud, F., Moser, M., and Keller, U., Q-switching stability limits of continuous-wave passive mode-locking, J. Opt. Soc. Am. B, 1999, vol. 16, no. 1, p. 46. https://doi.org/10.1364/JOSAB.16.000046

    Article  ADS  Google Scholar 

  8. Bae, J.E., Mateos, X., Aguiló, M., Díaz, F., de Aldana, J.R.V., Romero, C., Lee, H., and Rotermund, F., Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb:KLuW waveguide laser, Opt. Express, 2020, vol. 28, no. 12, pp. 18027–18034. https://doi.org/10.1364/OE.395701

    Article  ADS  Google Scholar 

  9. Powell, R.C., Payne, S.A., Chase, L.L., and Wilke, G.D., Index-of-refraction change in optically pumped solid-state laser materials, Opt. Lett., 1989, vol. 14, no. 21, pp. 1204–1206. https://doi.org/10.1364/OL.14.001204

    Article  ADS  Google Scholar 

  10. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, no. 3, pp. 183–191. https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  11. Sun, D., Wu, Z., Divin, C., Li, X., Berger, C., de Heer, W.A., First, P.N., and Norris, T.B., Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy, Phys. Rev. Lett., 2008, vol. 101, no. 15, p. 157402. https://doi.org/10.1103/PhysRevLett.101.157402

  12. Malic, E. and Knorr, A., Relaxation dynamics in graphene, in Graphene and Carbon Nanotubes, Weinheim: Wiley, 2013, pp. 83–143. https://doi.org/10.1002/9783527658749.ch4

    Book  Google Scholar 

  13. Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., and Ferrari, A.C., Graphene mode-locked ultrafast laser, ACS Nano, 2010, vol. 4, no. 2, pp. 803–810. https://doi.org/10.1021/nn901703e

    Article  Google Scholar 

  14. Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z.X., Loh, K.P., and Tang, D.Y., Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater., 2009, vol. 19, no. 19, pp. 3077–3083. https://doi.org/10.1002/adfm.200901007

    Article  Google Scholar 

  15. Cihan, C., Kocabas, C., Demirbas, U., and Sennaroglu, A., Graphene mode-locked femtosecond Alexandrite laser, Opt. Lett., 2018, vol. 43, no. 16, pp. 3969–3972. https://doi.org/10.1364/OL.43.003969

    Article  ADS  Google Scholar 

  16. Pushkin, A.V., Migal, E.A., Tokita, S., Korostelin, Y.V., and Potemkin, F.V., Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm, Opt. Lett., 2020, vol. 45, no. 3, p. 738. https://doi.org/10.1364/OL.384300

    Article  ADS  Google Scholar 

  17. Mary, R., Brown, G., Beecher, S.J., Torrisi, F., Milana, S., Popa, D., Hasan, T., Sun, Z., Lidorikis, E., Ohara, S., Ferrari, A.C., and Kar, A.K., 1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler, Opt. Express, 2013, vol. 21, no. 7, p. 7943. https://doi.org/10.1364/OE.21.007943

    Article  ADS  Google Scholar 

  18. Okhrimchuk, A.G. and Obraztsov, P.A., 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene, Sci. Rep., 2015, vol. 5, no. 1, p. 11172. https://doi.org/10.1038/srep11172

    Article  ADS  Google Scholar 

  19. Ren, Y., Brown, G., Mary, R., Demetriou, G., Popa, D., Torrisi, F., Ferrari, A.C., Chen, F., Kar, A.K., 7.8-GHz graphene-based 2-μm monolithic waveguide laser, IEEE J. Sel. Top. Quantum Electron., 2015, vol. 21, no. 1, pp. 395–400. https://doi.org/10.1109/JSTQE.2014.2350016

    Article  ADS  Google Scholar 

  20. Martinez, A. and Yamashita, S., 10 GHz fundamental mode fiber laser using a graphene saturable absorber, Appl. Phys. Lett., 2012, vol. 101, no. 4, pp. 2012–2015. https://doi.org/10.1063/1.4739512

    Article  Google Scholar 

  21. Okhrimchuk, A., Mezentsev, V., Shestakov, A., and Bennion, I., Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses, Opt. Express, 2012, vol. 20, no. 4, pp. 3832–3843. https://doi.org/10.1364/OE.20.003832

    Article  ADS  Google Scholar 

  22. Okhrimchuk, A.G., Shestakov, A.V., Khrushchev, I., and Mitchell, J., Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing, Opt. Lett., 2005, vol. 30, no. 17, p. 2248. https://doi.org/10.1364/OL.30.002248

    Article  ADS  Google Scholar 

  23. Ponarina, M.V., Ohrimchuk, A.G., Rybin, M.G., and Obraztsov, P.A., GHz repetition rate of picosecond pulses in a Nd:YAG waveguide laser, Bull. Lebedev Phys. Inst., 2019, vol. 46, no. 3, pp. 100–103. https://doi.org/10.3103/S1068335619030072

    Article  ADS  Google Scholar 

  24. Ponarina, M., Okhrimchuk, A., Alagashev, G., Orlova, G., Dolmatov, T., Rybin, M., Obraztsova, E., Bukin, V., and  Obraztsov, P., Wavelength-switchable 9.5 GHz graphene mode-locked waveguide laser, Appl. Phys. Express, 2021, vol. 14, no. 7, p. 72001. https://doi.org/10.35848/1882-0786/ac06af

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ponarina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponarina, M.V., Okhrimchuk, A.G., Rybin, M.G. et al. Waveguide Tm:YAP Laser with a Pulse Repetition Rate of 8 GHz. Bull. Lebedev Phys. Inst. 49, 229–234 (2022). https://doi.org/10.3103/S1068335622070053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622070053

Keywords:

Navigation